
Operating Systems and Architecture (CO527) Spring 2016

Using File Systems

Fred Barnes and Radu Grigore

Tree Structure
The information in a �le system is organised in a tree. Here is a (partial) tree of a UNIX-like operating system:

boot

opt
etc

bin

st
di
o.
h

stdlib.h
include

lib

usr

We can describe the path from to by ‘../usr/include’. The path from to could be described by ‘../../etc/opt/..’.
The path’s steps are separated by slash /. A step either goes up (..) or goes down along the named edge. (We
can only go up from a : If a path reaches a , then it’s stuck there.) Such paths are called relative paths, and
their starting point is the current working directory of the process. Absolute paths use the root of the tree as their
starting point, rather than the current working directory. Absolute paths are described by similar strings,
except the strings start with a slash. For example, both /etc and /etc/opt/.. are absolute paths to .

The circles represent directories, which are �les that have children. The downward pointing edges
represent directory entries. The squares represent non-directory �les, which are leaves of the tree. Normal
�les support read and write operations.

On POSIX operating systems there is only one �le system tree. If you know that one computer may have
both a hard drive and a DVD, then you may wonder how come there could be only one tree. To answer this,
take a look in the /dev directory:

rg@rg-2016:notes$ ls /dev/sda*
/dev/sda /dev/sda1 /dev/sda2 /dev/sda3 /dev/sda4 /dev/sda5 /dev/sda6 /dev/sda7

The �le /dev/sda contains all the content of a hard drive. The other ones are di�erent partitions on the same
hard drive. But, how do we see the �les in one of those partitions? We mount that �le:

mount /dev/sda1 /some/dir

The /some/dir must exist prior to running the command. After the command is run, /some/dir will contain the
�les on the partition /dev/sda1.

So, what’s going on here? The operating system shows us a virtual �le system. Files appear and disappear
in the directory /dev depending on which hardware devices the operating system detects. The operating
system gives us access to a wide range of devices using a uniform interface for interacting with �les. We
can tell the operating system, as we did above, that some of these devices contain real �le systems, and thus
grow subtrees in the unique virtual �le system tree.

1

Security
POSIX operating systems support at least the following basic system of permissions. Suppose we list details
about a �le:

rg@rg-2016:notes$ ls -l 03-file-use.tex
-rw-rw-r-- 1 rg rg 3538 Mar 18 17:35 03-file-use.tex

The �rst column contains three sets of permissions, namely (1) the user permissions rw-, (2) the group
permissions rw-, and (3) the other permissions r–. Each of those is a subset of rwx: r means ‘allowed to read’,
w means ‘allowed to write’, x means ‘allowed to execute’. Given a set of permissions, it is pretty clear what
we are allowed to do. But, there are three sets. Which one are we supposed to use? This is determined as
follows. Each �le has an owner and a group: these are listed in the columns 3 and 4 above, and both are rg.
Each user belongs to a set of groups; for example:

rg@rg-2016:notes$ groups
rg adm cdrom sudo dip plugdev lpadmin sambashare

If the owner of a �le tries to access it, then the set (1) of permissions is used. Otherwise, if the user accessing
the �le belongs to the group of the �le, then the set (2) of permissions is used. Otherwise, the set (3) of
permissions is used.

Apart from permissions, one could also use encrypted �le systems.

Reading and Writing Files
POSIX de�nes two interfaces for interacting with �les, a high-level one and a low-level one. Here is an
example of using the high-level interface:

1 #include <stdio.h>
2 int main() {
3 printf("Hello world!\n");
4 }

And here is an example of using the low-level interface:

1 #include <unistd.h>
2 int main() {
3 write(STDOUT_FILENO, "Hello world!\n", 13);
4 }

The high-level interface prints a string to the terminal. The low-level interface makes it clear that printing a
string is actually done by writing to a special �le, following the ‘everything is a �le’ philosophy of POSIX. The
low-level interface also makes it clear that we want to write 13 bytes. Apart from forcing us to specify some
uninteresting details, the low-level has yet another quirk: there is no guarantee that the string is actually
printed. If we want to make sure that ‘Hello world!’ is printed then we have to use a loop:

1 #include <unistd.h>
2 int main() {
3 const char * buf = "Hello world!\n";
4 int written = 0;
5 while (written < 13) {
6 written += write(STDOUT_FILENO, buf + written, 13 - written);
7 }
8 }

Why would write return before it writes 13 bytes? Because write cannot guarantee both (a) that it writes all
bytes, and (b) that it returns quickly. The design choice for the low-level interface is to prefer to return quickly.
The design choice for the high-level interface is to write all bytes. A similar trade-o� is made for reading.

In both the high-level and the low-level interface, one interacts with �les in three phases:

2

1. open the �le to obtain a �le handle

2. read from the �le, write to the �le, repeatedly

3. close the �le

For the high-level interface, the �le handle is called a stream, and it is a pointer to a FILE structure. For
the low-level interface, the �le handle is called a descriptor, and it is a nonnegative int. Thus, the high-level
interface is sometimes called the stream-based interface, while the low-level interface is sometimes called the
descriptor-based interface.

Let us implement a program that copies a �le, using the descriptor-based interface. We open and close
the �les as follows:

1 int in_file = open(argv[1], O_RDONLY);
2 int out_file = open(argv[2], O_WRONLY|O_CREAT|O_TRUNC, 0664);
3 // TO BE FILLED
4 close(in_file);
5 close(out_file);

The function open takes a path, which can be absolute or relative, and returns a �le descriptor. Above, we
assume that the path of the source is in argv[1] and the path of the target is in argv[2]. The function open takes
a second argument which speci�es how the �le should be opened. O_RDONLY means we will only read;
O_WRONLY means we will only write; O_CREAT means that the �le should be created if it does not exist;
O_TRUNC means that the content of the �le should be truncated (erased). The second argument is a bitmask,
so we can combine �ags with the bitwise logical-or operator. Optionally, the function open takes a third
argument. The third argument says which permissions should be used in case the �le is created. Recall that
we need three sets of permissions, each set being speci�ed by three bits. The literal 0664 is an octal number,
because it starts with 0. (This is a lexical convention used by C and by many other languages.) Each octal
digit corresponds to . . . three bits. So, each digit speci�es one set of permissions: 0664 stands for rw-rw-r�.

After opening and before closing the �les, we do the actual copying:

1 const int buffer_size = 1 << 20; // 1 MiB
2 char buffer[buffer_size];
3 while (1) {
4 ssize_t r = read(in_file, buffer, buffer_size);
5 if (r == 0) break;
6 ssize_t w = 0;
7 while (w < r) w += write(out_file, buffer + w, r - w);
8 }

You can �nd the full code in the �le copy.c.
We can copy �les using four functions:

1 int open(const char *pathname, int flags);
2 int open(const char *pathname, int flags, mode_t mode);
3 int close(int fd);
4 ssize_t read(int fd, void *buf, size_t count);
5 ssize_t write(int fd, const void *buf, size_t count);

The function open gives us a �le descriptor, provided a pathname in the virtual �le system. The function
close closes a �le descriptor. The functions read and write let us transport data to and from the �le.

Synchronous I/O Multiplexing
Suppose a process needs to read several �les in parallel. It could be that several �les are ready to be read
while others are not. This would happen, for example, if we would implement a server and the �les were
network connections. If the process calls read to get data from a �le that has no data ready, then the process’s

3

execution would be blocked until some data becomes available. In the meantime, the other �les, which may
have data ready, are ignored. How should we handle such a situation? One solution is to have multiple
threads, each thread reading from one �le only — this is asynchronous I/O multiplexing. Another solution is to
�rst ask which �les have data ready — this is synchronous I/O multiplexing.

Let us see how synchronous I/O multiplexing works on an example. We shall avoid using the network
for now. Instead, we use a special kind of �le called ‘�fo �le’ or ‘named pipe’. Let’s create two of these:

rg@rg-2016:files$ mkfifo one two
rg@rg-2016:files$ ls -l one two
prw-rw-r-- 1 rg rg 0 Mar 19 17:16 one
prw-rw-r-- 1 rg rg 0 Mar 19 17:16 two

We will put data into these �les using the cat command. In one terminal we run cat - > one, in another
terminal we run cat - > two. We’d like a to write program that is run by

rg@rg-2016:files$./counter one two

and periodically prints how many bytes came through one and two together, no matter in which order we type
in the two terminals. You can see a complete solution in the accompanying counter.c. Here, let us look at its
main bits.

The main loop looks as follows:

1 while (1) {
2 // <Setup nfds and all>
3 select(nfds, &all, 0, 0, 0);
4 // <Read from all files in all>
5 }

The variable all is a set of �le descriptors from which we wish to read. The function select returns when there
exists some subset of �le descriptors on which we can call read without a blocking fear. Moreover, select
modi�es the set all, so that it now contains only those �les on which it’s safe to call read.

Before entering the loop from above, we �rst open all �les of interest.

1 int files[n];
2 for (int i = 0; i < n; ++i) files[i] = open(argv[i+1],O_RDONLY);

At the beginning of each iteration of the main loop, we set up all by inserting into it all �le descriptors we still
have. We will make sure that each element of files is either a �le descriptor of an open �le, or it is −1.

1 fd_set all;
2 FD_ZERO(&all);
3 for (int i = 0; i < n; ++i) if (files[i] != -1) FD_SET(files[i], &all);

(We also need to set ndfs to 1 + max all. That’s easy. See counter.c if you don’t think so.)
After the call to select, we look at each �le descriptor still in all, and we process it. Normally, we just read

from it and count the bytes. But, it could also be we reached the end of �le, in which case we close the �le.

1 for (int i = 0; i < n; ++i) if (FD_ISSET(files[i], &all)) {
2 ssize_t r = read(files[i], buffer, buffer_size);
3 if (r == 0) { // end of file reached
4 close(files[i]);
5 files[i] = -1;
6 }
7 total += r;
8 // <Report total>
9 }

The stream-based interface does not support synchronous I/O multiplexing.

4

Exercises
1. IWhat is an absolute path of ?

2. Read ‘man path_resolution’.

3. The �le system tree is actually a directed graph. Read about �le system links (hard and soft).

4. Read ‘man mount’.

5. Which command is used to change the owner of a �le? Which command is used to change the group of
a �le? [Hint: Google.]

6. Which of the rwx permissions on a directory foo are needed to be able to change the current directory
to a subdirectory of foo? [Hint: Just try it.]

7. I Implement a function

1 boolean hasAccess(
2 char accessType,
3 String user, String[] userGroups,
4 String fileOwner, String fileGroup, String permissions);

For example, the call

1 hasAccess(’w’, "rg", new String[]{"foo","staff"}, "frmb", "staff", "rwxr-----");

should return false. You may use any language (but you’ll have to adapt the function signature).

8. The ‘Hello world!’ examples do not handle errors properly. See man printf and man 2 write for which
errors could occur, and change the program so that such errors are gracefully reported. At the very
least, ensure that the program does not crash in the event that an error occurs.

9. Can you think of a situation in which the return-early behaviour of the low-level �le interface is
preferable? [Hint: Think of scanf versus read.]

10. On Linux, you can see which �les are open using the lsof command. How many �les are open on your
system right now? Run man lsof, search for ‘TYPE’, to see how many types of �les there are.

11. IWhat is a �le handle? What is a �le descriptor? What is a stream?

12. Another interesting operation on regular �les is seeking. Read about it by running man lseek.

13. Implement counter.c using asynchronous I/O multiplexing. What extra complication arises?

14. Read ‘man select_tut’.

15. I In which situation would you use synchronous I/O multiplexing?

References
[1] Linux Foundation, Filesystem Hierarchy Standard, 2015

[2] General Concepts, POSIX, 2013

5

http://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html

