
Operating Systems and Architecture (CO527) Spring 2016

Implementing File Systems

Fred Barnes and Radu Grigore

Virtual File System
In the previous lecture, we saw that UNIX-like operating systems pretend there is only one tree of �les. We
can identify nodes of this tree by paths, which are strings. Regular �les are leafs of this tree. Once we get a
handle on a regular �le, we can open it, read it, modify it, and close it. More interestingly, to the tree of �les,
we can add whole subtrees, by mounting real �le systems. Let us peek under the hood to see how Linux
implements these operations.

The following three data structures correspond to several concepts we saw:

Concept Data Structure De�ned in
path step struct dentry include/linux/dcache.h
tree node struct inode include/linux/fs.h
open �le struct file include/linux/fs.h

Recall that for a path like /a/b/cwe said that a, b and c are path steps. In our tree picture, path steps correspond
to labelled edges. Each dentry (directory entry) contains its label, information about its neighbours in the
tree, and a pointer to the tree node it points to.

1 struct dentry {
2 struct qstr d_name; // label on the edge; e.g. "a" in the /a/b/c example
3 struct dentry * d_parent; // edge from above
4 struct list_head d_child; // sibling edges
5 struct list_head d_subdirs; // edges from below
6 struct inode * d_inode; // tree node, at the low end of the edge
7 // ...
8 };

Each inode contains information about a �le, such as its owner, permissions, and modi�cation times.

1 struct inode { kuid_t i_uid; kgid_t i_gid; /* ... */ };

A user space �le handle is essentially a reference to a kernel struct file. Each file tracks the current o�set:

1 struct file { struct inode * f_inode; loff_t f_pos; /* ... */ };

These data structures give a uniform way to represent the tree of �les; that is, the virtual �le system. But,
recall that this tree is a patchwork of subtrees that correspond to real �le systems. How are these di�erent
�le systems mixed? Each of the data structures from above remembers how to perform operations speci�c to
the real �le system they are a part of:

1 struct dentry { const struct dentry_operations * d_op; /* ... */ };
2 struct inode { const struct inode_operations * i_op; /* ... */ };
3 struct file { const struct file_operations * f_op; /* ... */ };

For example, the �le operations include

1 struct file_operations {
2 int (*open)(struct inode *, struct file *);

1

3 ssize_t (*read)(struct file *, char *, size_t, loff_t *);
4 int (*iterate)(struct file *, struct dir_context *);
5 // ...
6 };

One could view this scheme as a way to do inheritance in C.
If one creates a �le, for example, the inode operation create gets called. This operation will be speci�c to

the real �le system within which we create a �le. The operation creates an inode, and populates its i_op �eld.
If the new inode is a directory, then its create operation was likely set to be the same as the create operation of
the parent. But, in the virtual �le system we sometimes cross boundaries from one real �le system to another
real �le system. This happens at mount points. So, let us talk brie�y about mounting.

Each �le system, such as ext3 or VFAT or MINIX, is described by a struct file_system_type.

1 struct file_system_type {
2 const char * name;
3 struct dentry * (*mount)(struct file_system_type *, int, const char *, void *);
4 // ...
5 };

You can see the names of the registered �le system types by looking at the �le /proc/filesystem. (Incidentally,
/proc is the mount point of a �le system of type procfs, where the kernel publishes all kinds of useful
information.) The main characteristic of a �le system type, however, is not its name, but its mount function.
The mount function is a way to obtain the dentry that is the root of a real �le system, also known as its mount
point. The third argument could be, for example, the string ‘/dev/sda1’. Apart from returning the root dentry,
the mount function also creates an instance of struct super_block.

1 struct super_block { const super_operations * s_op; /* ... */ };
2 struct super_operations {
3 struct inode * (*alloc_inode)(struct super_block * sb);
4 void (*delete_inode)(struct inode *);
5 void (*dirty_inode)(struct inode *, int);
6 int (*write_inode)(struct inode *, int);
7 // ...
8 };

There is one instance of struct super_block for each mounted �le system. Data is actually written to the backing
store by the super operation write_inode.

MINIX File System
Now let us look in some detail at how one particular �le system is implemented. MINIX is not widely
used — we look at it because its implementation is simple, in comparison with the other �le system types.
Most of the relevant �les are in fs/minix/. Several data structures related to the physical layout are in in-
clude/uapi/linux/minix_fs.h.

The struct file_system_type for MINIX is declared in fs/minix/inode.c.

1 static struct file_system_type minix_fs_type {
2 .name = "minix",
3 .mount = minix_mount,
4 .fs_flags = FS_REQUIRES_DEV,
5 // ...
6 };

From here we �nd out that MINIX �le systems require a device. A device is typically identi�ed by an absolute
path in the virtual �le system. It could be something like the block special �le /dev/sda1, or it could be a
regular �le. The function minix_mount is de�ned in the same �le. It delegates most of the work to the generic

2

mount_bdev, where bdev stands for block device. The function mount_bdev is given a callback, the function
minix_fill_super, which does the MINIX-speci�c work. Let us take a look at it.

The �rst thing it does is to read block 1 (not 0, which is for booting):

1 static int minix_fill_super(struct super_block * s, void * data, int silent) {
2 // ...
3 if (!(bh = sb_bread(s, 1))) goto bad_sb;
4 ms = (struct minix_super_block *) bh->b_data;

where minix_super_block is de�ned in minix_fs.h:

1 struct minix_super_node {
2 __u16 s_ninodes;
3 __u16 s_nzones;
4 // ...
5 };

There are two things to note here. First, we were able to call the function sb_read to get a bu�er for block 1:
this was possible because of the work done by mount_bdev. Most of the interaction with the backing store is
done through these sb_* functions, which read/write whole blocks, and cache them in memory, for speed. A
block is often (but not always) the same size as a page: 4 KiB. Second, struct minix_super_node de�nes the
physical layout of the superblock. Indeed, the next thing that happens is that the information is copied from
struct minix_super_node into the in-memory representation of a MINIX super node.

1 sbi = kzalloc(sizeof(struct minix_sb_info), GFP_KERNEL);
2 s->s_fs_info = sbi;
3 // ...
4 sbi->s_ninodes = ms->s_ninodes;
5 sbi->s_nzones = ms->s_nzones;
6 sbi->s_imap_zones = ms->s_imap_zones;
7 sbi->s_zmap_zones = ms->s_zmap_zones;
8 // ...

The next thing being done is that s_imap_zones + s_zmap_zones blocks are loaded in memory.

1 block = 2;
2 for (i = 0; i < sbi->s_imap_zones; i++, block++) sbi->s_imap[i] = sb_bread(s, block);
3 for (i = 0; i < sbi->s_zmap_zones; i++, block++) sbi->s_zmap[i] = sb_bread(s, block);

Finally, the root inode is read.

1 root_inode = minix_iget(s, MINIX_ROOT_NODE); // MINIX_ROOT_NODE is 1
2 s->s_root = d_make_root(root_inode);

The function d_make_root returns a dentry, which is the one eventually returned byminix_mount. The function
minix_iget �rst invokes iget_locked, which searches a global cache for inodes, and then if that fails it reads
from the device using V2_minix_iget, which in turn invokes minix_V2_raw_inode. This latter function does
some interesting o�set computation:

1 struct minix2_inode *
2 minix_V2_raw_inode(struct super_block * sb, ino_t ino, struct buffer_head ** bh) {
3 struct minix_sb_info * sbi = minix_sb(sb);
4 int minix2_inodes_per_block = sb->s_blocksize / sizeof(struct minix2_inode);
5 // ...
6 ino--;
7 int block = 2 + sbi->s_imap_blocks + sbi->s_zmap->blocks
8 + ino / minix2_inodes_per_block;
9 *bh = sb_bread(sb, block);

3

10 // ...
11 struct minix2_inode * p = (void*) (*bh)->b_data;
12 return p + ino % minix2_inodes_per_block;
13 };

OK, maybe not that interesting, but at least not completely trivial. You should de�nitely make sure you
understand what happens above.

It turns out that the two groups of blocks at the beginning are bitmaps: the �rst s_imap_blocks track
which inodes are used, the next s_zmap_blocks track which data blocks are used.

TODO: maybe include impl
of some char device

Tracking Free Space
After so much code, let us step back into idea-land. File systems, like memory allocators, need to track which
space is available and which space is used. What is speci�c to �le systems is that allocation is done in big
chunks. Yes, even a one-byte �le occupies a whole block, which takes a few kilobytes. Because allocation is
done in big chunks, �le systems can use simpler methods of tracking free space.

TODO: more explanations
Consider a �le system with 2n data blocks, each holding 2k bits. We can track if one of these data blocks

is used with 1 bit. Thus, we need 2n bits, which �t in 2n−k extra blocks. For example, if there are 8192 data
blocks, each of 1024 bytes, then we can track which blocks are used by using one extra block. This scheme is
used by MINIX.

Alternatively, one can simply list the blocks that are free, in a list. Consider again a �le system with
2n data blocks, each holding 2k bits; and no extra blocks this time. To identify a block, we need a number
from {0, 1, 2, . . . , 2n

− 1}, which we can store in n bits. Thus, in one block we can �t b2k/nc block addresses. If
there are fewer free blocks, then we can store all their addresses in one block; say, in block 0. If there are ∼ 2n

free blocks, then we need ∼ 2n/(2k/n) � 2n−k/n blocks to keep track of free blocks. We can chain these blocks
in a list. Thus, we store only b2k/nc − 1 free block addresses in one block: the extra address is of the next
block in the free list. How does the free list end? For example, by saying that the next block in it is block 0,
which we have designated as the head of the list.

Exercises
1. IMost of the information in inodes is readily available via the command stat. Read ‘man stat’.

2. IWhat is an inode? What is a dentry? What is a super_block?

3. Since a �le can be memory mapped via mmap, it must be that the virtual �le system interacts with the
virtual memory. How does this interaction work?

4. Read ‘man mount’.

5. I Consider a �le system with 106 blocks, each of 1024 bytes: k blocks are reserved for a bitmap that
tracks which data blocks are in use; the other 106

− k blocks are data blocks. What is the minimum
value of k?

6. I Consider a �le system with total size 16 GiB, and blocks of 1 KiB. It tracks free space using the free
list method. How many block addresses �t in one block?

7. Which method for tracking free space in a �le system would you use? Why? [Hint (not answer!): What
happens to the free list when the �le system �lls up?]

References
[1] Linux kernel 4.2.0, Documentation/filesystems/vfs.txt, fs/*, and fs/minix/*

4

