
Operating Systems and Architecture (CO527) Spring 2016

Using Networks

Fred Barnes and Radu Grigore

Socket Programming
A connected socket is similar to an open �le. A connected socket is identi�ed by an integer, just like an open
�le is identi�ed by a �le descriptor which is an integer. We can use a connected socket in most places where
we can use a �le descriptor. In particular, we can use the functions read, write, and select.

To obtain a connected socket we must establish a network connection. Establishing a network connection
is asymmetric: the client initiates the connection, while the server waits for connections.

Here is what the client must do:

1 int s = socket(AF_INET, SOCK_STREAM, 0);
2 connect(s, (struct sockaddr *) &address, sizeof address);

Line 1 creates a socket; line 2 connects to a server. We will see later how address is set. After line 2, the client
can use the functions read and write as if s were a �le descriptor.

Here is what the server must do:

1 int listening_socket = socket(AF_INET, SOCK_STREAM, 0);
2 bind(listening_socket, (struct sockaddr *) &address, sizeof address);
3 listen(listening_socket, connection_queue_size);
4 int connected_socket = accept(listening_socket, NULL, NULL);

Line 1 creates a socket; line 2 binds the socket to a local address; line 3 prepares this socket to accept
connections; line 4 accepts a connection. In line 1, we choose which type of socket to use. In line 2, we choose
where to wait for connections: a computer may have multiple network interfaces, and even single network
interfaces have several ports. In line 3, we choose how many clients can queue waiting for a connection; if
more clients try to connect, they will be summarily refused. In line 4, we obtain a connected socket, which is
di�erent from the listening socket: we use connected_socket as if it were a �le, to communicate with the client;
we use listening_socket to accept further connections.

At this point, both the client and the server can communicate using the functions read and write, as if they
would be interacting with an open �le. See the accompanying miniclient.c and miniserver.c.

IP, TCP, UDP
Both the client and the server create sockets by calling

1 socket(AF_INET, SOCK_STREAM, 0)

The result is what POSIX calls an ‘internet domain byte-stream socket for use with IPv4 addresses’. In practice,
it means that we get to use the TCP/IP protocol, version 4.

IP (internet protocol) is the network protocol used by Internet. It is responsible for delivering packets
from one address to another. Each network card connected to the network has an IP address. In version 4,
an address is 32 bits long; in version 6, an address is 128 bits long.1 To be more precise, each IP address
identi�es a network interface, which may be a real network card or may be a special, virtual network card. For
example, each Linux computer has a so-called local loopback network interface, corresponding to the IPv4
address 127.0.0.1. On top of IP come several protocols, including TCP and UDP.

1 We are transitioning from IPv4 to IPv6 because there are more than 232 network cards in the Internet. The only reason the Internet
still works is that only some IPv4 addresses are visible globally. This is because the network has a hierarchical structure. If you want
more details, you’ll have to take a module about networks.

1



TCP (transport control protocol), the protocol used in the example above, gives the illusion of a reliable
stream of bytes. The user does not know (1) that the stream of bytes is split up into packets, (2) that packets
may overtake each other but TCP takes care of reordering them, and (3) that packets may get lost in transit
but TCP takes care to retransmit those. UDP (user datagram protocol) does not try so hard as TCP: (1) it
does not hide that data is split into chunks called datagrams, (2) it does not reorder datagrams that overtake
each-other, and (3) it does not retransmit lost or corrupted datagrams.

Both TCP and UDP add the notion of a port on top of that of IP address. Each IP address gets 216 ports,
from 0 to 216

−1. The purpose of ports is to allow several servers to use the same network interface at the same
time. For example, port 80 is traditionally reserved for http servers, while port 22 is traditionally reserved for
ssh servers.

If TCP does so much more than UDP, why would you ever used UDP? The standard use-case for UDP is
transmitting audio or video data. When you talk on Skype, it is not a big problem is the sound drops for
20 ms— you might not notice even. However, if the sound is delayed by 500 ms, then the perceived quality of
the call goes down sharply. That is, for audio, it is more important that data arrives at its destination quickly,
and less important that all data arrives.

From the point of view of programming, the main di�erence between using TCP and using UDP, is that
UDP does not use connected sockets. This means (1) that there is no special connection phase (no connect/
accept), and (2) that you specify the destination of a message every time you send one. Symmetrically,
you don’t �nd out the origin of some data by looking on which connection it comes, but by looking at the
message itself. In turn, this means that you do not use read and write to communicate. Instead, you use
sendto and recvfrom: the function sendto has extra arguments to specify the destination; the function recvfrom
has extra arguments to specify the source. (The above contains a small lie. You can in fact use connect and
write. The e�ect of connect is local: it simply sets a default destination, to be used with subsequent calls to
write. So, no connection actually takes place.)

IP Addresses
To connect or bind a socket, we need an address. If we know the 32 bit address, then we need to put it into a
struct sockaddr. For example, miniclient.c does the following:

1 struct sockaddr_in address = {
2 .sin_family = AF_INET,
3 .sin_addr = htonl(INADDR_LOOPBACK)
4 .sin_port = htons(12345),
5 };

The sin_family member says this is an IPv4 address; the sin_addr member says we use the special loopback
address 127.0.0.1, and the sin_port member chooses the port 12345. The functions htonl and htons adjust
the byte order from the convention of the host to that of the network. The convention of the host is often
little-endian, while the convention of the network is big-endian. In case htonX is called on a computer that
happens to use the same convention as the network, then htonX just returns its argument.

But, more often, we remember Internet server names rather than addresses. For example, we prefer to
remember www.google.com, rather than 216.58.213.100. The Internet contains servers whose goal is to convert
between names and addresses.2 POSIX speci�es a simple way to access this service: the function getaddrinfo.
Here is a typical call:

1 getaddrinfo("www.google.com", "80", &hints, &candidates);

Both hints and candidates are pointers to struct addrinfo. In hints we select, for example, whether we want TCP
or UDP. From candidates we read the address to use with connect or bind.

See the accompanying dns.c for an example of how to use getaddrinfo.

2 Your computer must know the IP address of a DNS (domain name system) server if you want to use names like www.google.com.
The IP address of a DNS server is acquired via a protocol called DHCP (dynamic host con�guration protocol). Again, you’ll have to take
a networks course if you want to know more.

2



The addresses obtained via getaddrinfo are so-called unicast addresses: they refer to a single network
interface. There exist also multicast addresses, which refer to some set of network interfaces, and a broad-
cast address (255.255.255.255), which refers to all network interfaces. Multicast is intended to be used for
distributing audio and video. The basic idea is to send less data over the network by taking advantage of
having multiple viewers. For example, if 10 students from University of Kent want to watch live some event
at the Olympic games in Rio, then surely it’s enough to send once the video data from Brazil to UK, and
split the stream into 10 copies once UK is reached. But, multicast is not used much: live events are rare, and
joining/leaving multicast groups involves some overhead. The function of multicast (exploit geographic
location to reduce network tra�c) is nowadays performed by CDNs (content delivery networks). Broadcast,
on the other hand, is sometimes used. However, broadcast does not mean that a message reaches the whole
of Internet: broadcast packets are not relayed by routers. So, broadcast really means ‘all network interfaces in
the local network’.

In Linux, only unicast addresses can be used with TCP.

Network Administration
Before we move on to some implementation details, let us look at several tools for network administration:
ss, ip, tc. These tools are not part of POSIX — they are Linux speci�c. Our goal is not to become adept at
network administration. Rather, we’ll use these tools to start peeking under the hood, at the implementation
of TCP/IP.

You can use ss to inspect the sockets on your system, which were created and not yet closed. For example,
ss -t lists the connected TCP sockets.

You can use ip to inspect and to change routing tables.

rg@rg-2016:network$ ip route show dev wlan0
default via 192.168.0.1 proto static
192.168.0.0/24 proto kernel scope link src 192.168.0.4 metric 9

Above, we see two entries in the routing table. The �rst one applies when no other does (default), and it
says that packages should be routed to 192.168.0.1. (That’s the address of a WiFi router, by the way.0 The
second one applies for destinations that match 192.168.0.0/24; that is, for destinations that are the same as
192.168.0.0 when we ignore the last 24 bits of the address. In this second entry there is no routing involved
(via is missing) which means that the packet should be sent directly. We can also inspect a table that caches
our neighbours — those to whom we can send packets directly:

rg@rg-2016:notes$ ip neighbour
192.168.0.9 dev wlan0 lladdr 3c:a9:f4:4a:f4:20 STALE
192.168.0.1 dev wlan0 lladdr 90:21:06:0a:05:c0 REACHABLE

We see two entries. One is STALE, which means that address was not seen for awhile. The other is reachable,
and is the address of the WiFi router. The lladdr gives the link-layer address, also called physical address, also
called MAC address. This table that tracks IP–MAC correspondence is sometimes called ARP table, because it
is built using ARP (address resolution protocol).

Finally, you can use tc to con�gure tra�c control. There are four kinds of tra�c control:

1. Tra�c shaping refers to delaying the transmission of outgoing packets. Without shaping, tra�c tends to
be quite bursty: long periods of inactivity interspersed with short periods of intense tra�c. This bursty
nature of the tra�c causes all kinds of problems. For example, if the intense tra�c exceeds network
capacity, this will lead to lost packets, which need to be retransmitted, hence causing even more tra�c.

2. Tra�c policing is applied to incoming tra�c: If the rate exceeds a threshold then a special action is taken.
That action could be dropping the packet, or it could be reclassifying it into a lower priority queue.

3. Tra�c scheduling refers to reordering packets on transmission. Without scheduling, a download could
completely ruin a Skype call. With scheduling, the kernel could make sure that high-priority but
low-bandwidth applications don’t get squeezed out by low-priority but high-bandwidth applications.

3



4. Tra�c dropping may happen both for incoming and for outgoing packets. The goal is in general to avoid
network congestion.

TODO: add qdisc and �lters

Exercises
1. IWhat is a socket?

2. Look at Java’s implementation of java.net.Socket and java.net.DatagramSocket.

3. To see all the network interfaces on your system, run ‘ip link’.

4. To see which servers and on which ports are running on your computer, run ‘nmap 127.0.0.1’. Figure
out how to do something similar by using ss.

5. I Give a list of four websites that are likely to use UDP. Connect to them, and check whether they do
indeed start UDP connections. [Hint: Use ss.]

6. For an example of how to use UDP, look at ‘man getaddrinfo’.

7. IWhat is the di�erence between multicast and broadcast?

8. Look at ‘man ss’, ‘man 8 ip’, and ‘man tc’.

4


