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Operating systems ensure (1) that all programs access the processor, and (2) that one crashing program
does not bring down others. To achieve these tasks, operating system implement two concepts, threads and
processes. Two threads running at the same time should get, roughly, the same processor time. A process is
a group of threads which are isolated from threads in other processes.

The informal notion of a program usually corresponds to an operating system process. There are excep-
tions. For example, Google Chrome uses one process for each tab. This way, it takes advantage of the isolation
between processes: if one tab crashes, the other tabs of the browser continue running. Thus, one reason for
implementing a program using multiple processes is to increase its reliability. Each process contains at least
one thread, so any multi-process program is also a multi-thread program. Apart from reliability, there are
two further reasons to implement programs using multiple threads: e�ciency and code organisation.

The operating system sees a number of threads trying to run on several processor cores. The operating
system does not know what each thread tries to achieve. If there are, say, 8 threads trying to run on 4 cores,
then the operating system ensures that each thread gets access to the equivalent of half a core. Thus, if a
program consists of more threads, then the program gets access to a bigger share of the processing resources.
It should be noted, however, that having a bigger share of the processor does not automaticallymake programs
faster. The reason is that the processor is only one of several computational resources: A program also needs
access to memory and, perhaps, the �le system and the network. In general, to speed up a program, one
needs to look at which resource acts as a bottleneck. When the processor is the bottleneck, which is rarely
the case, a program will generally run faster if it has multiple threads. (Although even this comes with the
proviso that we don’t know how to parallelize certain tasks: We don’t know if NC � P.)

The other reason for using multiple threads is code organisation. Here, the standard example is that of a
web server. A web server has to handle multiple clients at the same time. Yet, it is convenient to implement
the server as if there was a single client. Then, you ask the operating system to run several copies of the
same server, in parallel, one for each client. The alternative would be to explicitly handle multiple clients, for
example by using the select function, as we saw in the lecture about using �les.

Notice that the two reasons for using threads, e�ciency and code organisation, are complementary. We
can organise the code into threads even if there is only one processing core. But, we can gain e�ciency from
multiple threads only if there are multiple cores. Some people insist we should be using di�erent words to
refer to these di�erent uses of threads: concurrency to refer to the e�ciency-guided uses, and parallelism
to refer to the code organisation-guided uses. However, although the two goals are clearly di�erent, the
terminology concurrency/parallelism is not entirely standard. At least in the context of garbage collection,
these words are used in a completely di�erent way. Terminology aside, it is important to realise that threads
serve two di�erent purposes.

Let us now look at how to use multiple processes and multiple threads on a POSIX operating system.

Processes
Here is a simple program that starts several worker processes:

1 setpgid(0, 0);
2 for (int i = 0; i < workers_count; ++i) if (fork() == 0) { do_work(); return; }

After a call to fork, the parent process is cloned. The clones di�er in one thing: in the parent process, fork
returns a positive integer, which is the identi�er of the child process; in the child process, fork returns 0.
Hence, the function do_work is called only by the newly forked children.

Just like threads are grouped into processes, processes are grouped into process groups. The call
setpgid(0,0) creates a new process group, and makes the current process its leader. This comes in handy when
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you detect some irrecoverable error, and you want to terminate the main process and all worker processes.
Because they are in the same process group, you can say

1 killpg(getpgrp(), SIGKILL);

The getpgrp gets the identi�er of the current process group, and killpg sends the SIGKILL signal to all processes
in the group.

Finally, the main process will typically wait for all the worker processes to terminate.

1 while (wait(NULL) != -1);

The call to wait returns −1 when there is no (more) child to wait for. It may also return −1 if some other error
occurs. Be warned that all the snippets from above don’t handle errors, which real code should do.

Occasionally, processes of the same program will need to communicate. There are many communication
mechanisms: signals, pipes, named pipes, POSIX message queues, socket pairs; and also regular �les,
including memory mapped ones. We saw above an example of communication via signals: The default action
on receiving the SIGKILL signal is to terminate the process, but a process could also register a handler that
does something else. And, of course, there are other signals that could be sent.

Now let us look at another communication mechanism: POSIX message queues. This is an asynchronous
communication mechanism: the sender and the receiver do not need to be synchronized. We can send a
message as follows:

1 mqd_t q = mq_open("/message-queue-name", O_WRONLY | O_CREAT, S_IRWXU, NULL);
2 mq_send(q, "hello", 6, 0);
3 mq_close(q);

Message queue names must start with ‘/’. If the queue does not exist, it will be created (O_CREAT). If it will
be created, then the current user will have rwx permissions (S_IRWXU). The last argument of mq_open can
be used to specify the maximum number of messages in the queue and the maximum size of a message.
Here, we use the defaults (NULL). To send a message, we specify the queue to which to send it (q), what is the
message (“hello”), its length (6), and its priority (0).

To receive a message, we do something very similar:

1 #define buffer_size (1<<20)
2 char buffer[buffer_size];
3 mqd_t q = mq_open("/message-queue-name", O_RDONLY);
4 mq_receive(q, buffer, buffer_size, NULL);
5 mq_close(q);

As usual, be warned that real code must also handle exceptional situations, such as the case in which the
queue does not exist and such as the case in which the bu�er is too small to hold a message.

You can �nd a more or less complete example in the accompanying pgrep.c.

Threads
Processes are nicely isolated from one another by the operating system. But, on the negative side, forking
a process is a fairly expensive operation, because the whole state of the process needs to be cloned. Linux
does the cloning in a lazy fashion, so the price is not paid upfront. Threads are not nicely isolated from one
another: they share the same state. But, on the positive side, creating a process is a fairly cheap operation.
The di�erence in speed between processes and threads applies not only to creation: communication also
tends to be more expensive between processes than it is between threads. So, let’s take a look at how to use
threads.

Here we create a number of identical threads:

1 pthread_t threads[thread_count];
2 for (int i = 0; i < thread_count; ++i) {
3 pthread_create(&threads[i], NULL, thread_main, NULL);
4 }

2



The function thread_main is the entry point of the threads, and we need to implement it.

1 void * thread_main(void * unused) { ++counter; return NULL; }

Our threads increment a counter and then terminate. Recall that, unlike processes, threads share the same
state — they operate in the same virtual memory space. So, if counter is some global variable, then all threads
refer to the same place in memory. Now let’s wait for all threads to �nish:

1 for (int i = 0; i < thread_count; ++i) {
2 pthread_join(threads[i], NULL);
3 }

Observe that we have the following correspondence between operations on processes and operations of
threads:

Processes Threads E�ect
fork() pthread_create(&id, NULL) spawns a new process/thread
waitpid(id, 0) pthread_join(id, NULL) waits for process/thread id to terminate

But recall there are di�erences. The most important one is that fork clones the virtual memory space, but
pthread_create does not. Now, after joining all the threads, let us print the value of the counter.

1 printf("%d", threads_count);

If the counter starts at 0, then we expect the printed value to be threads_count, because the each thread
increments the counter once. Alas, it turns out that counter is sometimes a bit smaller than threads_count. What
is going on? The issue is that the increment operation is not atomic. It involves fetching data from memory
to a register in the processor, actually incrementing the value, and then moving the data back to memory.
It is possible, although not very likely, that a thread is interrupted in the middle of this process. When the
interrupted thread continues, it will operate on a stale value of counter. And all modi�cations done by other
threads to counter are lost because the interrupted thread now writes back to memory an old value of counter.

To ensure that counter is incremented properly, we can use a mutex. We bracket the increment operation
by locking and unlocking a mutex.

1 pthread_mutex_lock(&counter_mutex);
2 ++counter;
3 pthread_mutex_unlock(&counter_mutex);

The mutex is initialised as follows:

1 pthread_mutex_t counter_mutex = PTHREAD_MUTEX_INITIALIZER;

What does a mutex do? When a thread locks the mutex, we say that it acquires the mutex; when a thread
unlocks a mutex, we say that it releases the mutex. Imagine the mutex as a token that sits on a table, and
threads as people walking around the table. Acquiring a mutex means taking the token from the table and
holding it; releasing a mutex means putting the token back on the table. The main guarantee o�ered by a
mutex is that only one thread can hold it, at any time. In our case, since all threads that operate on counter do
so while holding counter_mutex, it follows that the operations on counter are atomic: they appear as if they
are done in one step.

Now observe what is happening here. On the one hand, communication between threads would appear
to be simpler: We do not need to instantiate a message queue and call special functions — we simply modify
variables which are shared and visible to all threads. On the other hand, if we do not do some extra work to
synchronize threads, our modi�cations to shared variables can have surprising e�ects.

Mutexes are just one synchronization primitive. Another one are condition variables. A call to

1 pthread_cond_wait(&condition_variable, &mutex);

will release mutex (which must be held), wait until the condition variable is signaled, and then reaquire mutex
and continue. To signal a condition variable, you call
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1 pthread_cond_signal(&condition_variable);

A combination of a mutex with a condition variable is called a monitor.
It’s worth observing that Java objects are essentially monitors. Each Java object has associated a mutex

and a condition variable, which are not directly accessible. However, adding the synchronized keyword on a
method, has the same e�ect as locking the mutex (associated with object this) at the beginning of the method,
and unlocking the mutex at the end of the method. Finally, the wait and notify methods of java.lang.Object have
exactly the same e�ect as pthread_cond_wait and pthread_cond_signal. Of course, the pthreads interface is a
lot more �exible (and, hence, potentially confusing). For example, (1) you can lock a mutex in one function
and unlock in a di�erent one; and (2) you can associate a condition variable with one mutex, and later in the
execution associate it with a di�erent mutex.

Another interesting synchronisation primitive is the readers–writer lock. The relevant functions are rdlock,
wrlock, and unlock — all pre�xed by pthread_rwlock_. So, a readers–writer lock is much like a mutex, except it
has two types of locking. In our analogy with the object on the table, you can imagine that one may ‘hold’
the token in two ways. One way is to simply touch the token, without moving it from its place on the table.
Multiple people can touch the token at the same time, as long as they don’t move it. The other way to hold a
token is the traditional one: you take it of the table and hold it in your hand. Only one person at a time can
do this; moreover, no other person can touch the token while you took it o� the table. To just touch the token,
you call pthread_rwlock_rdlock. To take it o� the table, you call pthread_rwlock_wrlock. If you want to stop
touching the token, of if you want to place the token back on the table, you call pthread_rwlock_unlock. But
why the operations called rdlock (acquire read lock) and wrlock (acquire write lock). That’s because of the
typical way a RW-lock is used. It is used to protect some variable or data structure, which we can inspect and
modify. If we just inspect it, then we acquire the RW-lock in read mode. If we also modify it, then we acquire
the RW-lock in write mode.

Exercises
1. Implement a variant of pgrep that uses threads instead of processes. You will have to implement a

concurrent (message) queue, using synchronization primitives such as mutexes.

2. IWhat is the main di�erence between inter-thread communication and inter-process communication?

3. IWhat is a readers-writer lock?

4. IWhat is a condition variable?

5. Read ‘man mq_overview’.

6. Read ‘man pthreads’. Which other synchronisation primitives are there available in pthreads?
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