Operating Systems and Architecture (CO527) Spring 2016

Schedulers

Fred Barnes and Radu Grigore

Threads and Schedules

A scheduler is an operating system component that decides which thread runs on which processing unit. In
this note, from now on, we say ‘core’ rather than the longer ‘processing unit’. As an example, consider a
situation in which we have 2 cores, and the following requests:

1. at time 1, thread A starts to run; it will finish after it gets to run for 3 time units

2. also at time 1, thread B start to run; it will finish after it gets to run for 2 time units

3. at time 2, thread C starts to run; it will finish after it gets to run for 4 time units

4. at time 3, thread D starts to run; it will finish after it gets to run for 1 time unit

5. and finally, at time 6, thread E starts to run; it will finish after it gets to run for 1 time unit

Given such a list of requests, a scheduler must find a schedule: for each unit of time, which thread executes on
which core. For example, the figure below illustrates three possible schedules for the requests above:

core 1: A A A D | idle E
core 2: B B C C C C

} schedule 1

core 1: A C B D C E
core 2: B A C A | idle C

} schedule 2

core 1: A A C C C C
core 2: B B D A | idle E

} schedule 3

| | | : : | ——> time
1 2 3 4 5 6 7

(A3) (C4) (D)) (E,1)

(B,2)

Below the time axis, we have labels of the form (thread, duration), which correspond to the events listed
above. The time units are arbitrary: for an operating system like Linux, the time unit is ~ 10 ms. Let’s look
at the label (D, 1), which is under time 3. It says that D requires one unit of time. Indeed, in schedule 1,
thread D runs on core 1 in the time interval (4, 5); in schedule 1, it runs on core 1 in the time interval (4, 5);
and in schedule 2, it runs on core 2 in the time interval (3, 4). Notice that all intervals are after time 3 when
the request arrived.

Properties of Schedules

Schedules have several characteristics, such as response time, (core) utilisation, and context switching.

The response time of one thread in a given schedule is the time passed since the thread requests to start
until it thread finishes. The total response time of a schedule is the sum of the response time of all the threads
in that schedule. The delay of one thread in a given schedule is the difference between the response time and

the duration that thread runs. The total delay of a schedule is the sum of the delays of all the threads in that
schedule. For example, in the example above, the request times, the finish times, the response times, and the
delays are as follows:

Finish Response Delay

Thread Request Runtime 1 2 3 1 2 3 1 2 3
A 1 3 4 4 4 3 3 3 0 0 O
B 1 2 3 4 3 2 3 2 010
C 2 4 7 7 7 5 5 5 1 1 1
D 3 1 55 4 2 2 1 1 10
E 6 1 7 7 7 1 1 1 0 0 0
Total 13 14 12 2 3 1

We see that schedule 3 has the smallest total response time and the smallest total delay. So, schedule 3 is the
best with respect to response times.

Another way to evaluate schedules is to look at core utilisation. The utilisation of a core is the number of
time steps it was active (non-idle) divided by the total number of steps. The total utilisation of a computer
is the sum of utilisations over all cores. (Sometimes the term ‘load” is used instead of “utilisation’.) In our
example, the total utilisation is 1.8(3) for all three schedules. In general, higher utilisation indicates that less
time is wasted, with cores being idle and not doing work.

Finally, another way to evaluate schedules is to count context switches. A context switch is a transition
from one thread to another, on one core, ignoring idle times. So, for example, core 1 in schedule 1 has one
context switch A — D, and one context switch D — E. In total, schedules 1, 2, 3 have, respectively, 3, 9, and 4
context switches. We care about context switches because they imply delays: for example, the caches local to
one core are not that helpful after a context switch. So, schedule 1 is the best with respect to the number of
context switches.

Real Time

As we saw, there are several measures we can use to gauge how good schedules are. We can also combine
several measures. For example, we could say that schedule X is better than schedule Y when the total delay
of X is smaller than the total delay of Y, or the total delays are equal but X has a smaller maximum delay
per thread.! Real time applications are those which strongly prefer schedules with small maximum delays
per thread. Hard real time applications have a deadline: all schedules with a maximum delay exceeding the
deadline just as bad — they are unusable. That is, if two schedules both exceed the deadline, then it makes
no sense to say which of them is better. Soft real time applications are real time applications that are not hard.?

Real time applications usually produce periodic requests for the scheduler. For example, Skype might
have a thread that every 50 ms compresses the audio data captured in the previous 50 ms. This leads us to an
interesting problem. Suppose that compressing 50 ms of audio data takes T ms. Can we find a schedule?
Well, it depends on T, but also on the number of cores N. An easy way to tell is as follows: It is possible if
and only if the total utilisation is < N. But, how total utilisation is a property of a schedule: How can we
compute it if we don’t even know whether a schedule exists? Since the requests are periodic, it is reasonable
to expect that if a schedule exists then a periodic schedule exists. Now, if we look at a long enough time

of D ms, for any schedule, the number of requests will be D/50 and the nonidle time will be DT/50 + NT.
The error can’t be bigger than NT. (Exercise: Why?) And, of course, the time available to each core is D.

Thus, total utilisation is

DT
EiNT_ T E

=—+
D 50 D

Since this is true for any D (we chose it arbitrarily), we just let D — oo to make the error arbitrarily small.

Finally, we get that the total utilisation is T/50, as we’d have guessed immediately if wouldn't have wanted to

! More briefly, we’d say we use the lexicographic order on (total delay, maximum delay).
2 One could still use a deadline with soft real time applications. In that case, schedules would use the lexicographic order on (count
of deadline misses, maximum deadline, something else).

TODO: prove

check more carefully. And here is the simple criterion: Total utilisation cannot exceed the number of cores. If
it does, we say that the requests are not schedulable.

Schedulers

Now let us look at a few scheduling algorithms.

FIFO Scheduler

A FIFO scheduler maintains a queue of threads waiting to run. When a new request arrives, it is enqueued,
unless there is an idle processor where the thread can begin execution immediately. When a thread finishes
and its core becomes available, the next thread from the queue is given the available core. Threads always
run to completion.

As an example, schedule 1 from above is produced by a FIFO scheduler. You can find a FIFO scheduler
simulator in the accompanying FifoScheduler.java.

Round Robin Scheduler”

A round robin scheduler is similar to a FIFO scheduler. The main difference is that threads do not run to
completion. Instead they run for just one time step, and then are moved back in the queue.

The accompanying RoundRobingScheduler.java contains a simulator. Let us look at its most important
parts. The simulator reads in a list of requests like the following:

Make it non-optional?

O WN KRR RN
monNnw>
= = AN W

This corresponds to our previous example. The first line gives the number of available cores. The second line
says that, at time 1, thread A is created, and thread A will finish after it will run for 3 time steps. The third
and following lines have the same format as the second line. The number of cores is stored in integer n; the
rest is stored in a Deque(Task) called input. The fact that we parse all the input before doing any work and the
particular type of input are implementation details.

The important data structures of the simulator are

Deque<Task> active = new ArrayDeque<>();
Deque<Task> running = new ArrayDeque<>();

In the queue active we hold those threads that were created but did not finish. In running we hold those

threads that are currently running. The exact type of running is an implementation detail; however, it is

important that active has a queue data type. (In other words, it should be straightforward to change the type

of running to an array, but you'd run into more trouble if you'd change the type of active to an array. Try it!)
The main loop has the following structure:

int time = 0;

while (!running.isEmpty() || lactive.isEmpty() || !input.isEmpty(Q)) {
// <Simulate one step>
++time;

}

We simulate one step as follows: TODO: for litprog: say whic
chunk I define

// <Handle requests to create threads>
// <Put threads back in the queue after they run one step>
// <Schedule work for the next time step>

—-

[I N O)

Let’s start with the last part. To schedule work for the next time step, we simply move at most n threads from
active to running:

for (int 1 = 0; i < n & lactive.isEmpty(Q); ++i)
running.addLast(active.removeFirst());

After one time step, when we put threads back in the queue active, we also check whether threads termi-
nated.

while (!running.isEmpty(Q)) {
Task t = running.removeFirst();
if (--t.duration > ®) active.addLast(t);

}

Finally, to handle requests to create threads, we move threads that start at the current time from input to
active.

while (true) {
Task t = input.peekFirst(Q);
if (t == null || t.startTime > time) break;
input.removeFirst(Q);
active.addLast(t);

}

The loop above assumes that input contains threads ordered by their startTime.
If we run RoundRobinScheduler on the example input from above, we get

@l A:1 B:2
@ C:1 A:2
@3 B:1 D:2
@4 C:1 A:2
@5 C:1

@ E:1 C:2

The first line says that at time 1 (@1) thread A runs on core 1 (A: 1) and thread B runs on core 2 (B: 1). We can
see that thread A finished at time 5, with a delay of 1. The total delay of this scheduleis 1 +1+1+4+0+0=3.

Completely Fair Scheduler”

In this section we look at the scheduler used by Linux?®, which is called CFS (completely fair scheduler). CFS
approximates an ideal round robin scheduler whose time unit tends to 0. Let’s see what happens if we use a
round robin with a very small, albeit not 0, time unit. We’ll use our running example. If we make the time
unit 10° times smaller than it used to be, then all the times in the input get multiplied by 10°:

2

1000000 A 3000000
1000000 B 2000000
2000000 C 4000000
3000000 D 1000000
6000000 E 1000000

If we run our scheduler on this file, we see that the finish times for threads A, B, C, D and E are, respectively
5000000 3666667 7000000 4666666 7000000
or, in terms of the initial units, approximatively

2
5 32 7 4

wirn
-

3version 4.2

for a total delay of 1 + 2 + 1 4 2 4 0 = 35. We could reason about the limiting case directly: If n threads run
on k cores for a time interval dt, then each thread gets to run for min{dt, %} time. We say that each thread
runs at the speed min{1, %}. In our example, we have

From To Duration Running Speed Runtime
1 2 1 AB 1 1

2 3 1 ABC 2/3 2/3

3 11/3 2/3 ABCD 1/2 1/3
11/3 14/3 1 ACD 2/3 2/3
14/3 5 1/3 AC 1 1/3
5 6 1 C 1 1

6 7 1 CE 1 1

Threads running in parallel have the same speed. The speed changes when a running thread terminates or a
new thread is created.

CFS changes the set of running threads only at integer times, but it tries nevertheless to imitate a schedule
like the one above. To do so, it associates with each thread a virtual time variable. Intuitively, this variable
tracks how much of the ideal schedule a particular thread executed. For example, at time 11/3 in the ideal
schedule from above, thread A executed for 1 + 2/3 + 1/3 = 2 time units; hence, after executing for 2 time
units, thread A has virtual time ~ 11/3. The virtual time only approximates 11/3 because tracking the exact
value would be too expensive in terms of computing time. CFS handles our running examples as follows:

Virtual time
Time Action Active Speed A B C D E
1
2

1 create AB AB 1 1
run AB AB 1 2

2 create C ABC 2/3 2 2 2
run AB ABC 2/3 7/2 T7/2 2
done B AC 1 7/2 2

3 create D ACD 2/3 7/2 2 3
run CD ACD 2/3 7/2 7/2 9/2
done D AC 1 7/2 7/2

4 run AC AC 1 9/2 9/2
done A C 1 9/2

5 runC C 1 11/2

6 create E CE 1 11/2 6
run CE CE 1 13/2 7
done CE

Whenever a thread is created, its virtual time is set to equal the real time. At each time step, at most 2 threads
run, because we have two available cores. CFS always chooses to run those threads with smallest virtual times.
Thread speed is defined as before, with respect to the number of active threads. (In the ideal scenario, there
is no distinction between running and active threads.) Whenever a thread runs for one time unit, the inverse
of the speed is added to the virtual time of the thread.

Note that, after thread A runs for 2 time steps, its virtual time is 7/2 which is fairly close to 11/3: the error
is 1/6. What causes this error? The computation done by CFS — simply adding the inverse of the speed —
does not take into account the creation of thread D at time 3. That creation slows down thread A in the ideal
schedule, from speed 2/3 to speed 1/3. But, CFS adds 3/2 to the virtual time, as if the second time step of
A is all spent at speed 2/3. CFS could do an exact computation in this case, but that would be complicated,
expensive, and without a big benefit in practice.

The accompanying CompletelyFairScheduler.java contains a simulator. The main difference from the round
robin scheduler is that the queue is replaced by a priority queue, which is sorted by the virtual time.

oW N e

Scheduler Tuning

The model we used so far is simplified. In reality, for example, (a) cores do not change threads in sync, all at
the same time, and (b) threads sometimes yield, meaning that they ask to wait. Nevertheless, the model was
expressive enough to illustrate several important concepts, such as delay and response time. Other aspects,
such as context switches (changing which thread runs on a core), thread migration (moving a thread from
one core to another), and data locality (whether threads acting on the same data run on the same core), are
not salient in our model. Still, these other aspects are important in practice.

One strategy to improve the efficiency of a program is to keep together the threads that act on the same
data. To do so, we use code like

cpu_set_t cpu_mask;

CPU_ZERO(&cpu_mask) ;

CPU_SET(0®, &cpu_mask); CPU_SET(3, &cpu_mask); CPU_SET(4, &cpu_mask);
sched_setaffinity (0, sizeof(cpu_set_t), &cpu_mask);

After this, the current thread will only be allowed to run on cores 0, 3 and 4. In general, the affinity of a thread
is a set of processing units on which it is allowed to run.
The accompanying program affinity.c uses sched_setaffinity to illustrate the effect of data locality.

Exercises

1. » What is a FIFO scheduler?
2. What is a round-robin scheduler?

3. » Two periodic tasks are run on a single processor. The first task has a period of 100 ms and a duration
of 10 ms. The second task has a period of 200 ms and a duration of 40 ms. What is the CPU utilisation?
What would happen if the CPU utilisation would be > 1?

4. Look at FifoScheduler.java and RoundRobinScheduler.java side by side. Describe the differences. [Hint:
There exist several tools for comparing text files, suc as vimdiff.] Same for RoundRobinScheduler.java and
CompletelyFairScheduler.java.

5. The virtual times computed by a completely fair scheduler approximate the real times of an ideal
scheduler. Can you change the completely fair scheduler so that it tracks the times of an ideal scheduler
exactly?

6. » What is processor affinity?

7. Look at “‘man sched_setscheduler’ to see which schedulers are available in Linux, and how to choose
them.

References

[1] Linux kernel 4.2.0, Documentation/scheduler/sched-design-CFS.txt

