
coreStar: The Core of jStar

Matko Botinčan1, Dino Distefano2, Mike Dodds1,
Radu Grigore2, Daiva Naudžiūnienė1, and Matthew J. Parkinson3

1 University of Cambridge,
{matko.botincan,mike.dodds,daiva.naudziuniene}@cl.cam.ac.uk

2 Queen Mary, University of London,
{dino.distefano,radu.grigore}@eecs.qmul.ac.uk

3 Microsoft Research Cambridge, mattpark@microsoft.com

Abstract. Separation logic is a promising approach to program verifi-
cation. However, currently there is no shared infrastructure for building
verification tools. This increases the time to build and experiment with
new ideas. In this paper, we outline coreStar, the verification framework
underlying jStar. Our aim is to provide basic support for developing
separation logic tools. This paper shows how a language can be encoded
into coreStar, and gives details of how coreStar works to enable extensions.

1 Introduction

Separation logic [23] based approach to program verification has gained
a lot of attention recently. It enables sound and precise reasoning about
complex heap (and, generally, resource) properties which pose a major

challenge to other approaches. For making separation logic an interesting hammer
for program verification the crucial thing was development of tools that: (1)
have automated the reasoning with separation logic [4,14,17,18,10] and (2) have
scaled it to programs of substantial size [25,9,6]. These efforts were focused
on automated proving of shape properties for low-level C programs, however,
separation logic based verification of programs written in higher-level languages
has also been approached. For instance, Distefano and Parkinson have developed
jStar, a tool for verifying Java programs [15]. What is common about all these
tools is that each one of them had to incorporate in one way or another a number
of core techniques such as symbolic execution with separation logic [5] or loop
invariants inference (e.g. like in [14]) for ensuring termination of the symbolic
execution.

In general, building a program verification tool is a daunting task and requires
knowledge of many domains (such as decision procedures, theorem proving, formal
semantics, verification condition generation, abstract interpretation, compilation,
etc.) and a complex software engineering. The line of work on the Boogie program
verifier [1,20] has identified this problem and has offered a solution in terms of an
intermediate verification language and a program verifier for this language. The
end result has shown a lot of success and Boogie has been used as a verification
backend for a number of tools including Spec# [3], VCC [11] and Dafny [19].

Motivated by the Boogie approach to program verification, this paper proposes
a similar agenda for separation logic based program verification. We present
coreStarIL— an intermediate language for program verification with separation
logic, and coreStar— a tool enabling automated verification of coreStarIL programs.
Like with Boogie, coreStarIL programs can be written manually, however, the goal
is that they are automatically generated by program verifiers that take programs
written in higher-level languages and encode the semantics of the input program
by translating it to coreStarIL.

coreStar is the result of efforts to make the core of jStar generic and reusable.
It has been successfully applied as a backend to a couple of other separation
logic based program verifiers: MultiStar [24] for reasoning about multiple related
abstractions with its frontend for Eiffel and VMC [8,7] for verifying multicore C
programs with asynchronous memory operations. Nevertheless, many of its design
choices are still open, and design decisions already been made have to be justified
further. The purpose of this paper is to describe the current state of coreStar and
encourage its critique and suggestions from the verification community for the
further development.

2 A crash course on separation logic

Separation logic [23] helps in achieving local reasoning when dealing
with heap allocated data structures. The idea is that verification should
focus on what changes, not what stays the same. To achieve this,

separation logic takes a different starting perspective than Hoare logic: instead
of pre- and postconditions describing the global state, it just describes a part of
the state. A precondition must describe resources that a command accesses, and
everything not mentioned in the precondition is implicitly left unchanged. If the
command terminates, then the resulting partial state satisfies the postcondition.

To deal with this property formally, separation logic introduces a new logical
connective ∗ that expresses disjointness of partial states. The conjunction P1 ∗P2

says that the state can be split into two disjoint parts, one satisfying P1 and the
other P2. This connective enables the so-called frame rule which allows us to
extend any Hoare triple {P}C {Q} by an arbitrary frame F that is unchanged
by the command C, and in this way enable the local reasoning.

Any application of separation logic to automated program analysis and
verification requires support of a separation logic theorem prover. The purpose
of the prover is to answer queries involving separation logic formulae that occur
during symbolic execution. Existing techniques for automated theorem proving
in separation logic deal only with a limited fragment of separation logic (often
referred to as “symbolic heaps”). In this fragment there is no negation and
formulae are required to be of the form ∆ = Π ∧ Σ where Π is a ∧-separated
sequence of pure (first-order) formulae, and Σ is a ∗-separated sequence of spatial
formulae. This fragment has been proven in practice to be quite effective in terms
of expressiveness as well as computational tractability.

2

coreStar is intended to be generic. Hence, the underlying symbolic heap
representation in the tool does not hard-code any particular pure or spatial
predicates (even the very basic points-to predicate 7→ is not included). A user
defines his own version of separation logic to be used by providing logic rules
that define how the predicates are manipulated. We provide a more detailed
description about logic rules and how coreStar’s separation logic theorem prover
works in Sec. 5.

3 coreStar’s input language coreStarIL

coreStarIL is a simple untyped imperative language that can be seen as
a variant of Dijkstra’s guarded commands [12]. Variants of Dijkstra’s
guarded commands have also been used as a basis of intermediate

representation in ESC/Java [16] and Boogie [2]. The coreStarIL syntax looks as
follows:

Program ::= {∆P } (CoreStmt;)+ {∆Q}
CoreStmt ::= x̄ := {Pre}{Post}

| goto l1, . . . , ln

| label l

| abs

Here ∆P , ∆Q (the pre- and postcondition of the program), Pre and Post (the
pre- and postcondition of commands) are symbolic heaps, x̄ is a list of variables
(we use () to denote the empty list), and l, l1, . . . , ln are labels. A symbolic heap
is a formula of the form Π ∧ Σ where Π and Σ are pure and spatial assertions,
respectively, defined by:

Π ::= true | E = E | E 6= E | p(E) | Π ∧ Π
Σ ::= emp | s(E) | Σ ∗ Σ

(E ranges over expressions, p(E) is a family of pure predicates and s(E) a family
of spatial predicates).

The key difference compared to the other representations [12,16,2] is use of
so called specification assignment x̄ := {Pre}{Post}. We explain the semantics
of the specification assignment in more details in Sec. 4, but, intuitively, its
purpose is to support state-modifying commands in a way that is “natural” for
separation logic: the part of the state that is not touched by the command is
framed away and the specification of the command is used to replace the local
pre-state with the local post-state. In specification assignments we allow special
variables v that are implicitly existentially quantified (over the whole statement).
The postcondition of the specification assignment can contain variables ret1, . . . ,
retn that get bound to x1, . . . , xn.

3

The rest of the statements are fairly standard: goto performs demonic non-
deterministic jump to one of the labels denoted by label statement and abs
triggers the abstraction4 (the meaning of which is explained in Sec. 6).

3.1 coreStarIL encoding of a simple heap-manipulating language

To illustrate how to translate from a higher level language to coreStarIL we show
a translation of a Smallfoot [4]-like heap-manipulating language. We consider
a slightly simplified sequential version of Smallfoot with the commands of the
following syntax:

A ::= empty empty command
| x := E variable assignment
| x := [E] heap lookup
| [E] := F heap mutation
| new(x) allocation
| dispose(x) deallocation

C ::= A | C; C | x := f(E)
| if(E) {C} else {C} | while(E) {C}

Atomic commands. Since atomic commands A allow reading and mutation
of heap we have to somehow represent the heap contents. The standard way in
separation logic is to use the spatial predicate 7→ such that x 7→ v iff the local
heap contains a single cell x that points to the value v. Following the semantics of
the atomic commands [5] we translate them to coreStarIL statements as follows:

tr(empty) = () := {}{};
tr(x := E) = x := {}{ret = E};
tr(x := [E]) = x := {E 7→ v}{E 7→ v ∧ ret = v};
tr([E] := F) = () := {E 7→ v}{E 7→ F};
tr(new(x)) = () := {}{x 7→ v};

tr(dispose(x)) = () := {x 7→ v}{};

In the translated statements v is a fresh unifiable variable. For readability we
have omitted explicitly denoting the translation of expressions.

If-else and while. coreStarIL does not contain assert and assume statements
like languages in [12,16,2] as these statements can in fact be encoded using
specification assignment:

assert(E) , () := {E}{}
assume(E) , () := {}{E}

4 Although in principle we can perform abstraction automatically at dominators of
basic blocks, we want to allow frontend to decide when to perform the abstraction.

4

Using assume statements the if-else and while commands can be translated in a
standard way:

tr(if(E) {C1} else {C2}) = goto l1, l2;
label l1; assume(E); tr(C1) goto l3;
label l2; assume(¬E); tr(C2) goto l3;
label l3;

tr(while(E) {C}) = label l1; abs; goto l2, l3;
label l2; assume(E); tr(C) goto l1;
label l3; assume(¬E);

where l1, l2 and l3 are fresh labels. Note that we are putting the abs statement
at the head of the loop to allow abstraction (though a translation equivalent to
what the Smallfoot tool does would not contain it).
Procedure calls. A procedure call is translated by using the callee’s specification
and encoding it into the specification assignment. If λy . {P}f(y){Q} is the
specification of a function f then

tr(x := f(E)) = x := {P [E/y]}{Q[E/y]}

In order to avoid capture, the variables in the specification of f need to be
freshened before the substitution takes place.

4 Symbolic execution in coreStar

In coreStar, the symbolic execution is performed on the control-flow
graph of the input program. The symbolic states are defined as pairs of
a CFG node and a symbolic heap. Statements are executed symbolically

over the symbolic states, i.e., at each step the current symbolic state is updated to
reflect the abstract effect of the statement. The process executes until it reaches
a fix-point where no new symbolic states can be reached.

The input to the symbolic execution is a coreStarIL program of the form
{∆P }s1; . . . sn; {∆Q}. coreStar provides two kinds of symbolic execution:

– symbolic execution with frame inference;
– bi-abductive symbolic execution.

In the classical symbolic execution with frame inference, assuming ∆P statements
are symbolically executed aiming to reach at the end a symbolic state implying
∆Q. However, this approach assumes that we have given a sufficient precondition
for s1; . . . sn;. Sometimes we want to allow incomplete preconditions (e.g., because
we want to relieve the user of the burden to write down the specification or because
we may just not know the complete specification). coreStar can try to find out the
missing part of the precondition ∆M such that {∆P ∗∆M}s1; . . . ; sn{∆Q} (even
if ∆P is empty). This approach requires using a technique called bi-abduction [9]
so we are referring to it as bi-abductive symbolic execution.

5

4.1 Symbolic execution with frame inference

Classical symbolic execution for separation logic requires frame inference, that is:
given ∆1 and ∆2 find ∆F such that ∆1 ` ∆2 ∗ ∆F holds. The frame inference
allows us to execute a command C with a precondition P and a postcondition Q
from a current state ∆H in the following way:

{P}C {Q} ∆H ` P ∗ ∆F

{∆H}C {Q ∗ ∆F }

If there exists ∆F such that ∆H ` P ∗ ∆F then this rule says that from a
pre-state ∆H we can propagate Q ∗ ∆F to the post-state.

4.2 Bi-abduction

Bi-abduction [9] can be seen as a generalisation of the frame inference: given
∆1 and ∆2 the goal is to find the “missing” assumption (anti-frame) ∆A and
the frame ∆F such that ∆1 ∗ ∆A ` ∆2 ∗ ∆F holds. The authors of [9] have
considered solving the bi-abduction query by utilizing separate proof systems for
frame inference and abduction. In coreStar we solve the bi-abduction query using
a single proof system as it will be explained in Sec. 5.

Using the Hoare’s rule of consequence, the procedure for bi-abduction gives
rise to a bi-abductive version of the frame rule:

{P}C {Q} ∆H ∗ ∆A ` P ∗ ∆F

{∆H ∗ ∆A}C {Q ∗ ∆F }

The rule tells us that given a pre-state ∆H and a specification of a command
{P}C {Q} we can compute ∆F and ∆A such that ∆H ∗ ∆A is sufficient to
execute C in order to obtain the post-state Q ∗ ∆F .

4.3 Bi-abductive symbolic execution

Now we describe how the symbolic execution with bi-abduction operates in
coreStar. To simplify the presentation we represent the input program by a
set of nodes N , and the functions succ : N → N returning the successor
node which represents the statement that follows in the input program and
stm : N → S returning the statement associated with the node (S denoting the
set of coreStarIL statements). Symbolic execution operates by traversing pairs
of the form (n, (∆H , ∆M)) where n ∈ N is a node, ∆H is the symbolic heap
representing the current state and ∆M is the missing part of the heap discovered
so far which needs to be added to the precondition.

Fig. 1 shows the symbolic execution rules that define the effect of each
coreStarIL statement on a symbolic state. If (n, (∆H , ∆M))

s
 (n′, (∆′

H , ∆
′
M))

then executing s in the state (n, (∆H , ∆M)) leads to the new state (n′, (∆′
H , ∆

′
M)).

All rules apart from the rule for specification assignment are straightforward.
To execute x̄ := {Pre}{Post} in a pre-state (∆H , ∆A) we proceed as prescribed

6

(n, (∆H ,∆M))
x̄:={Pre}{Post}

 (succ(n), (∆F ∗ Post[x̄/ ¯ret],∆A ∗ ∆M)) where
∆H ∗ ∆A ` Pre ∗ ∆F

(n, (∆H ,∆M))
goto l1,...,ln (nli , (∆H ,∆M)) where stm(nli) = label li, i = 1..n

(n, (∆H ,∆M))
label l
 (succ(n), (∆H ,∆M))

(n, (∆H ,∆M))
abs
 (succ(n), abs(∆H ,∆M))

Fig. 1: Symbolic execution rules for coreStarIL statements.

by the bi-abductive version of the frame rule. We first invoke the prover to
provide us with the pair of symbolic heaps (∆F , ∆A) solving the associated
bi-abduction query, and then conjoin (∆F , ∆A) with (Post[x̄/ ¯ret], ∆M) to obtain
(∆F ∗ Post[x̄/ ¯ret], ∆A ∗ ∆M) as a post-state.

The first and the second rule in Fig. 1 are nondeterministic (the nondeter-
minism in the first rule may arise due to multiple answers to the frame inference
question, and in the second due to multiple labels) thus the transition to a
new symbolic state may introduce more than just a single symbolic heap pair
associated with the destination node. Thus in coreStar the nodes are associated
with sets of symbolic heap pairs and are traversed by employing a worklist
algorithm. Each such set of symbolic heaps pairs associated to a node represents
a disjunction over its elements.

After the symbolic execution completes we are left with a missing part in the
anti-frame that together with the starting ∆P forms a new candidate precondition
∆P ′ . To check that the ∆P ′ is sufficient to execute the program we re-run the
symbolic execution starting with precondition ∆P ′ , this time with the frame
inference only.

Example. To illustrate how the bi-abductive symbolic execution works let us
consider the example in Fig. 2 (a). Symbolic execution with frame inference only
would fail at the third statement program since we do not have a heap cell for x.
Bi-abductive symbolic execution at this step finds the missing part ∆A = x 7→ .
After forming a new candidate precondition we run the symbolic execution with
frame inference as shown in Fig. 2 (b).

5 The coreStar’s separation logic theorem prover

As we have seen in Sec. 4, the purpose of the separation logic theorem
prover in coreStar is to provide an answer to three types of queries:

– the frame inference;
– the bi-abductive frame inference; and
– deciding implications between symbolic heaps.

The last type of query occurs when checking whether the final disjunctive state
in the symbolic execution satisfies the desired postcondition. Answering all three
types of queries reduces to a particular proof search task.

7

{emp} }
new(z); ∆F = emp, ∆A = emp
{z 7→ } }
[z] := 0 ∆F = emp, ∆A = emp
{z 7→ 0} }
dispose(x); ∆F = z 7→ , ∆A = x 7→
{z 7→ 0 }

(a) Bi-abductive frame inference

{x 7→ } }
new(z); ∆F = x 7→
{x 7→ ∗ z 7→ } }
[z] := 0 ∆F = x 7→
{x 7→ ∗ z 7→ 0} }
dispose(x); ∆F = z 7→
{z 7→ 0 }

(b) Frame inference

Fig. 2: Symbolic execution example

5.1 Prover’s internals

The design of the coreStar’s separation logic prover builds on the design of the
entailment prover in Smallfoot [5] and descendent tools. In contrast to these prior
tools, the coreStar’s prover works with an internal representation that allows
performing the bi-abductive frame inference directly. We first explain how the
prover performs the frame inference, and then show what is different for the
other two types of queries.

Frame inference. To perform frame inference coreStar’s prover works with
sequents Σ | ∆A ` ∆G, where ∆A is the assumed formula, ∆G is the goal formula
and Σ is the subtracted (spatial) formula. The semantics of this judgment is
Σ ∗ ∆A ⇒ Σ ∗ ∆G.

As in Smallfoot, in order to answer the frame inference question, starting
with a sequent emp | ∆1 ` ∆2 the prover searches for sequents of the form
Σ | ∆L ` true ∧ emp. All such leftover formulae ∆L are collected from the leaves
of the proof search tree and their disjunction forms the frame that was searched
for. Namely, an incomplete proof

Σ | ∆L ` true ∧ emp

...

emp | ∆1 ` ∆2

can be transformed into the desired proof of ∆1 ` ∆2 ∗∆L by spatially adding ∆L

to the right hand side at every proof step, and in addition, allowing ∗-introduction
of ∆L at the top of the proof.

Bi-abductive frame inference. The proof search in bi-abductive frame infer-
ence is performed using sequents Σ | ∆A ` ∆G a ∆M , where ∆A is the assumed
formula, ∆G is the goal formula, Σ is the subtracted (spatial) formula and ∆M

represents the anti-frame part of the formula. The sequents that the prover
searches for in this case are of the form Σ | ∆L ` true ∧ emp a ∆M . The frame
and the anti-frame are formed from a disjunction of all leftover pairs of formulae
∆L and ∆M .

8

Semantics of our bi-abductive proof sequents can be described in the following
way. Assume that the sequent Σ | ∆A ` ∆G a ∆M appears in the proof
search that has started from a symbolic execution pre-state (∆H , ∆P). Then the
semantics of the sequent is given by

Σ ∗ ∆A ∗ ∆M ∗ ∆P ⇒ Σ ∗ ∆G ∗ ∆H .

In other words, one can see the symbolic execution with bi-abductive frame
inference as performing a proof search for the given sequence of statements using
the sequents of the form

Σ | ∆A ` ∆G a ∆M aa ∆H , ∆P

with the above semantics.

Deciding implication. To decide the implication the prover works like in the
frame inference case but searches for sequents of the form Σ | emp ` true ∧ emp.

5.2 Logic rules

The prover engine of coreStar is designed to be agnostic to specific details of the
underlying logical theory. Except for basic constants true and emp, equalities,
disequalities and the multiplicative connective, no other pure or spatial predicates
are predefined in coreStar. Support for a particular version of separation logic is
provided by specifying rewrite and proof rules in input files. This allows coreStar
to deal not just with heap-specific reasoning (like most tools for shape analysis
with separation logic do) but to reason in general about any objects that can be
represented by means of abstract predicates [21] like e.g., threads, locks, abstract
datatypes, etc.

Proof rules. Some general structural rules that need to be used with any kind
of separation logic proof system are hard-coded into the prover. However, the
rules that define how the reasoning within a particular logic theory is performed
are specified externally and have to be provided by the user.5 coreStar loads the
proof rules into the separation logic prover and during the proof search applies
the rules in order as they are specified in the input file. coreStar proof rules are
specified using the syntactic construct rule [13]:
rule X: | Concl-L |- Concl-R -| Concl-A

if SubtFPre | Prem-L |- Prem-R -| Prem-A

The keyword if separates the conclusion from the premise. Mathematically this
syntax corresponds to

Σ ∗ SubtFPre | ∆A ∗ Prem-L ` ∆G ∗ Prem-R a ∆M ∗ Prem-A
Σ | ∆A ∗ Concl-L ` ∆G ∗ Concl-R a ∆M ∗ Concl-A

X,

for some Σ, ∆A, ∆G and ∆M . Notice that this means that proof rules are
implicitly framed – everything that is not mentioned in the definition of the proof
rule is left unchanged.

5 At the moment of writing this paper coreStar does not check that user-defined rules
are consistent. Therefore, the user should ensure the soundness of rules.

9

rule pto match: | x 7→ y |- x 7→ t
without y 6= t
if x 7→ y | |- y = t
or x 7→ y | y = t |- -| y = t

rule pto missing: | |- x 7→ y
if | |- -| x 7→ y

Fig. 3: Proof rules for the points-to predicate.

Example. The coreStar proof rules for bi-abductive reasoning with standard
separation logic points-to predicate are shown in Fig.3. The empty parts of the
sequents stand for empty heap emp (and therefore are simply preserved), and the
question mark is used to denote variables that can be unified with any expression.

The rule pto_match says if we have a heap cell with the same address in
both the assumed and the goal formula of an entailment, then move the cell to
the matched (subtracted) formula, and either add a proof obligation that the
corresponding values are the same to the goal formula, or abduct this equality
and add it to the assumption and the anti-frame. The without clause prevents
firing of the rule if we already know the cells have different values (this way we
can avoid applying the rule infinitely). The rule pto_missing performs abduction
of a heap cell and adds it to the anti-frame in case the rule pto_match did not
fire and we still have the heap cell in the obligation.

Rewrite rules. The prover also can be extended with rewrite rules which are
used to simplify terms. For example, the following rewrite rules would be used to
simplify list terms:
rewrite cons hd: hd(cons(x, y)) = x
rewrite cons tl: tl(cons(x, y)) = y

6 Abstraction

Symbolic execution alone does not converge in many cases. To ensure
termination, symbolic states need to be abstracted. In coreStar, ab-
straction is invoked on abs statements. Abstraction is critical for the

success of the symbolic execution. If abstraction forgets too much information
then next steps of symbolic execution may fail due to too weak symbolic state.
If abstraction keeps too much information then the computation may never
converge.

6.1 Abstraction rules

Abstraction rules help the convergence of coreStar’s computation by syntactic
rewriting of predicates. The idea is that an abstraction rule simplifies a formula
so that it remains within a restricted class of heaps for which simplification is
known to converge. Abstraction rules are of the form:

condition

∆H ∗ ∆′
H ∆H ∗ ∆′′

H

(Abs Rule)

10

Heap ∆′
H gets replaced by ∆′′

H if the condition holds. ∆′′
H should be more abstract

(simpler) than ∆′
H since some unnecessary information is removed (abstracted

away). Heap ∆H is an arbitrary context preserved by the abstraction rule.
Given a set of abstraction rules, coreStar tries to use any rules that can be

applied to a heap. When no rules are applicable the resulting heap is maximally
abstracted. Note that to ensure termination of this strategy, abstraction rules
should be chosen so that each application strictly simplifies the heap. Moreover,
for soundness, the abstraction rules must be true implications in separation logic.
When designing abstraction rules checking this implication gives an easy sanity
condition for the soundness of the resulting fixed-point computation.

Example. The abstraction rules used for linked lists are based on how programmers
typically deal with linked list programs. For example, suppose we had a predicate
node(x, y) representing a node at address x with the next pointer y, and a
predicate lseg(x, y) representing a linked list starting at y and ending with a
pointer to y. We might want to have the following rules for abstraction [14]:

∃x′ . node(x, x′) ∗ node(x′, nil) lseg(x, nil)

∃x′ . lseg(x, x′) ∗ node(x′, nil) lseg(x, nil)

∃x′ . lseg(x, x′) ∗ lseg(x′, nil) lseg(x, nil)

In coreStar, the last rule, for instance, would be specified as

x /∈ Context ∪ {x}
lseg(x, x) ∗ lseg(x, nil) lseg(x, nil)

The heap ∆H is implicitly added to both sides of . The condition in the rule says
that x does not occur syntactically in the rest of the heap (i.e., x /∈ V ar(∆H))
and that x cannot be instantiated to x.

7 Conclusions and future work

The tool coreStar retains the Java-agnostic parts of the program verifier
jStar— a prover and a symbolic interpreter. The prover answers three
types of queries: Given ∆1 and ∆2, (1) find ∆A and ∆F such that

∆1 ∗ ∆A ` ∆2 ∗ ∆F holds, (2) find ∆F such that ∆1 ` ∆2 ∗ ∆F holds, and
(3) decide ∆1 ` ∆2. Here, ∆s are separation logic formulas. A few symbols, such
as equality and emp, are interpreted by the prover directly; a few other symbols,
such as addition, are interpreted by an SMT solver, which is asked to reason
about the pure parts of the formulas; all other symbols, including predicates like
points-to, are interpreted according to a set of logical rules provided by the user.

The symbolic interpreter works on programs written in coreStarIL, which is
a very simple language. Its control flow is unstructured and the only interest-
ing statement is the specification assignment. The interpreter (tries to) answer
two types of questions: Given a program P with precondition ∆1 and post-
condition ∆2, (4) find ∆A such that {∆1 ∗∆A}P {∆2} is a valid Hoare triple

11

and (5) decide {∆1}P {∆2}. In both cases, it over-approximates the possible
executions according to a set of user-provided abstraction rules.

The interface to the prover (tasks 1–3 above) is a fairly stable OCaml module
signature; the interface to the symbolic interpreter (tasks 4 and 5 above) is
coreStarIL. We believe that many tools based on separation logic contain im-
plementations of special cases of tasks 1–5. For example, Sec. 3.1 essentially
shows how the Smallfoot tool [4] could be reimplemented as a small frontend
for coreStar.

Much of the burden of ensuring soundness, however, remains with the frontend,
because coreStar believes, without checking, that all the (logical and abstraction)
rules it is given are sound. We are exploring several approaches to make coreStar
less gullible. One option is to formalise coreStar’s proof system in a higher-order
prover and accept only rules that come with a soundness proof. Another option is
to design a higher level language for rules that curtails expressivity such that the
soundness of logical rules is decidable. We could also restrict abstraction rules so
that their confluence and termination is decidable.

On the other hand, there are situations where we feel that the current
abstraction rules are not flexible enough, which is why coreStar has a prototype
mechanism to allow plugging in arbitrary abstract domains. When such plugins
are in use, how much coreStar trusts its user is not the only issue — now it becomes
important how much the user should trust coreStar. To tackle this problem, we
are considering generating proofs (and requiring plugins to provide proofs) that
can be checked easily.

Currently, coreStar provides no support for verifying large programs. For
example, in jStar it is the frontend’s responsibility to encode method calls as
coreStarIL specification assignments. Once coreStarIL has procedures and proce-
dure calls, coreStar should implement several global analyses, such as specification
inference for mutually recursive procedures via bi-abduction [9] or RHS [22].

References

1. Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs. In
FMCO, pages 364–387, 2005.

2. Michael Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured
programs. In PASTE, pages 82–87, 2005.

3. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec# programming
system: An overview. In CASSIS, 2004.

4. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In FMCO, pages 115–137, 2005.

5. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with
separation logic. In APLAS, pages 52–68, 2005.

6. Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory safety for systems-
level code. In CAV, 2011.

7. Matko Botinčan, Mike Dodds, Alastair F. Donaldson, and Matthew J. Parkinson.
Proving the safety of asynchronous memory operations in multicore programs.
Submitted.

12

8. Matko Botinčan, Mike Dodds, Alastair F. Donaldson, and Matthew J. Parkinson.
Automatic safety proofs for asynchronous memory operations. In PPOPP, pages
313–314, 2011.

9. Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Com-
positional shape analysis by means of bi-abduction. In POPL, pages 289–300,
2009.

10. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated
verification of shape, size and bag properties. In ICECCS, pages 307–320, 2007.

11. Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. Vcc: A practical
system for verifying concurrent c. In TPHOLs, pages 23–42, 2009.

12. Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, 1975.

13. Dino Distefano, Mike Dodds, and Matthew J. Parkinson. How to verify java program
with jStar: a tutorial. http://www.jstarverifier.org/jstar.tutorial.pdf.

14. Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis
based on separation logic. In TACAS, pages 287–302, 2006.

15. Dino Distefano and Matthew J. Parkinson. jStar: towards practical verification for
java. In OOPSLA, pages 213–226, 2008.

16. Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: generating
compact verification conditions. In POPL, pages 193–205, 2001.

17. Alexey Gotsman, Josh Berdine, and Byron Cook. Interprocedural shape analysis
with separated heap abstractions. In SAS, pages 240–260, 2006.

18. Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the verifast program
verifier. In APLAS, pages 304–311, 2010.

19. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In LPAR, pages 348–370, 2010.

20. K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate verification
language: Design and logical encoding. In TACAS, pages 312–327, 2010.

21. Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction.
In POPL, pages 247–258, 2005.

22. Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL, pages 49–61, 1995.

23. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, 2002.

24. Stephan van Staden and Cristiano Calcagno. Reasoning about multiple related
abstractions with multistar. In OOPSLA, pages 504–519, 2010.

25. Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino
Distefano, and Peter W. O’Hearn. Scalable shape analysis for systems code. In
CAV, pages 385–398, 2008.

13

http://www.jstarverifier.org/jstar.tutorial.pdf

	coreStar: The Core of jStar

