
CONSTRUCTING CHECKERS FROM PSL PROPERTIES

Stefan Valentin Gheorghita†‡ and Radu Grigore‡

†Eindhoven University of Technology, PO Box 513,
5600MB, Eindhoven, The Netherlands
‡NoBug Consulting, Bucharest, Romania

Email: s.v.gheorghita@tue.nl, radu.grigore@nobugconsulting.ro

Abstract: Model checking and simulation are the main techniques widely used in hardware
verification. The past years trend is to bring together these two verification techniques in order
to employ knowledge and tools produced by one to help the other. This paper describes a tool
that translates properties written in PSL, a model checking language, into checkers written in
languages suitable for simulation. The tool has two main focuses: first, retargetability, and
second, simplicity, efficiency and clarity of the resulted checkers. However, its speed is in the
same order of magnitude with those of commercial tools already existing on the market.

Keywords: Hardware Verification, Model Checking, Simulation, Hardware Design

1 INTRODUCTION

Two main techniques are currently widely used in the ver-
ification of hardware design: model checking and simu-
lation. The model checking technique is applied mainly
to small and medium size designs. The size limitation
comes from the complexity of the algorithms used for
verification. As a result, these languages are not designed
for writing large test environments. They do inherit code
structure constructs from HDLs (Hardware Description
Languages), but these are inferior to those found in gen-
eral purpose programming languages like Java. Instead,
they are very expressive, in the sense that the code for ex-
pressing a seemingly complicated property is very short,
compared to languages used in simulation-based tech-
niques. The algorithms used for simulation checking are
much more efficient because, by definition, this technique
is not intended to be exhaustive. The languages offer
much smaller “bricks” and advanced ways in which they
can be “glued” to form a big edifice, much like general
purpose programming languages.

A trend (Abarbanel and et al 2000) has emerged in the
hardware verification community to work towards the
convergence of these two verification technique cate-
gories. The idea is to employ knowledge and tools pro-
duced by one domain to help the other.

A hardware testing engineer receives a HDL design and a
specification, written in English, that describes what the
design does. His job is to verify the compatibility be-

tween the design (“how”) and the specification (“what”).
To do this, he creates a simulation environment written in
a verification language. The purpose of the simulation en-
vironment is to provide inputs, tocheckthe outputs and,
sometimes, internal signals of the design under test. The
parts that check the behavior are named “checkers” (Geist
and et al 1999).

Therefore, these checkers are created from an English de-
scription. Instead of using a general purpose verification
language to describe them, it is better to use a formal
language that resembles the informal language used in
the specification document. PSL (Property Specification
Language) tries to do that. Its syntax and semantics are
described in (Accellera 2003).

This paper describes a tool that translates properties writ-
ten in PSL into checkers written in languages suitable
for simulation-based environments. The tool can gen-
erate four kinds of automata (deterministic or not, with
counters or not). This allows taking advantage of spe-
cial built-in capabilities of describing automata that out-
put languages might have. For example, if an output lan-
guage supports direct description of nondeterministic au-
tomata, then constructing such an automaton saves space.
If the output language allows only deterministic behav-
ior (e.g. Verilog), then a deterministic automaton can be
built. Currently, two different languages are supported, e
(Verisity 2002) and Verilog (IEEE 2001).

The main characteristics of this translator are: (i) it is

easily retargetable to other (simulation) languages, (ii) it
is fast, therefore, can be used in a commercial setting,
(iii) its generated checkers are small, efficient and easily
understandable by humans

Section 2 presents similar existing tools. Section 3 and
Section 4 show the process by which the algorithms are
derived, by giving a few examples. The automata con-
structed by these algorithms are optimized (Section 5).
The architecture (Section 6) and the performance (Sec-
tion 7) are presented towards the end of the paper.

2 RELATED WORK

The first tool designed to generate checkers from PSL
properties was FoCs (Abarbanel and et al 2000), pro-
duced by IBM Research Laboratory in Haifa. It generates
checkers written in Verilog, VHDL and C++. An advan-
tage of FoCs over our tool is that it can process the GDL
and Verilog modeling layers. The output generated by
FoCs is more compact than ours because it takes full ad-
vantage of Verilog’s1 expressive power. Our tool is easily
retargetable because it requires only very basic function-
ality from the target language. An interesting side-effect
is that, although the output might be bigger, it is much
more easily comprehensible by humans.

Another study was done at Cambridge (Gordon,et al.,
2003; Gordon 2004) on generating checkers using auto-
mated reasoning in HOL. This tool is too slow to be used
in practice, but it can be used to test or prove correctness
of tools like FoCs and the one described in this paper,
which are not accompanied with fully formal proofs of
the algorithms used.

3 PSL AND AUTOMATA SEMANTICS

3.1 Introduction to PSL Semantics

The standard (Accellera 2003) defines the semantics of
PSL properties2 in terms of traces. In general, these can
be tree-like and unbounded. Since we restrict our discus-
sion to properties that can be verified by simulation, we
consider only linear finite length traces.

A trace t is a finite sequence of states; formallyt =
(s0, . . . , sn−1) wheresi ∈ S, the set of all possible states
of a circuit. A state determines the value ofall the signals
in the circuit for some clock. The design is considered to
be digital and synchronous: signals have only two possi-
ble values (asserted/trueandnot asserted/false) and the
time evolution is discrete.

For example, let us consider an inverter with inputi and
outputo. For this circuit there are four possible statessio.
A valid trace is:

t0 = (s01, s10, s10, s01, s10) (1)

An invalid trace is:

t1 = (s00, s10, s10, s01, s10) (2)

1Verilog is the common output language between our tool and FoCs.
2The word “property” is used in a sense that includes SEREs (Sugar

Extended Regular Expressions). The distinction between these two
terms is not essential for the purpose of this paper.

A PSL property that describes an inverter, specifying the
family of “correct” traces that containst0 but nott1, is3:

always i 6= o; (3)

The semantics of PSL properties is given by defining the
|= relation. For a tracet and a PSL propertyp the expres-
siont |= p evaluates to true if and only ift belongs to the
family defined byp. For example, if we denote byp the
property defined in equation 3 then we have:

(t0 |= p) = TRUE (4)

(t1 |= p) = FALSE (5)

According to the PSL Language Reference Manual
(LRM), every construction that is syntactically correct
has well defined semantics. The meaning of the basic op-
erators is given by defining|=. The other operators can be
reduced to basic operators by applying a set of rewritting
rules.

Before giving a few definitions from the standard we
need to introduce a few notations for operations on traces.
Concatenation is denoted by writing the operands next to
each other:t1t2. For simplicity we use the same no-
tation for a state and a trace with one state. We can
also “cut” a part of a trace: ift = (s0, . . . sn−1) then
ti,j = (si, . . . , sj). As a shorthand, we writeti instead
of ti,n−1. The length of a trace is denoted|t| = n. Some
example definitions of basic operators are the following:

•t |= b means that|t| ≥ 1 andb ∈ s0, whereb is a
boolean signal or a boolean expression constructed
from signals; ifb appears inside a SERE then there
is the additional requirement|t| = 1
•t |= p1; p2 means that there existst1 andt2 such that
t = t1t2, t1 |= p1 andt2 |= p2

•t |= p1 : p2 means that there existst1, t2 ands such
thatt = t1st2, t1s |= p1 andst2 |= p2

•t |= X! p means that|t| > 1 andt1 |= p
•t |= [p1 U p2] means that there exists0 ≤ k < |t|
such thattk |= p2 and for all0 ≤ j < k we have
tj |= p1

•t |= p1 7→ p2 means that for all0 ≤ j < |t| t0,j |=
p1 implies that there existsj ≤ k < |t| such that
tj,k |= p2 or for all j ≤ k < |t| there exists a trace
t′ such thattj,kt′ |= p2

Some operations defined by reductions (see (Beer and
et al 2001) and (Accellera 2003) for a complete list) are:

•p[∗i] ≡ p; p; . . . ; p (i times)
•always p ≡ G p ≡ ¬ F¬p
•F p ≡ [TRUE U p]
•next p ≡ X p ≡ ¬ X!¬p

Using these rules we can find the formal semantics of the
property given in 3. First, the reduction rules are applied.
The result is:

¬[TRUE U(i = o)] (6)

3The symbol6= between booleans is used to denote the “exclusive
or” operation. The symbol= will be used to denote “not exclusive or”.

Afterward, the definitions of basic operators are applied.
After some logic manipulationt |= always(i = o) be-
comes:

[∀k.0 ≤ k < |t| : (i 6= o) ∈ sk] (7)

3.2 Automata Semantics

The semantics on traces of deterministic finite automata
(DFAs) with accepting states is standardized. The DFA
guarantees that there is exactly one active state at each
moment of time. A DFA has only one initial state and for
each of its states and each possible circuit state there is
exactly one active transition. Under these conditions, we
say that automatonA is similar with propertyp if for all
tracest the automaton reaches an accepting state if and
only if t |= p. We writeA ∼ p. The complement au-
tomaton, defined byB ∼ ¬p, is obtained fromA flipping
the accepting flag on each state.

Given such an automaton, we can verify if a property
holds for a circuit by simulating the circuit, driving the
automaton with the circuits signals and looking at the end
of the simulation at the state the automaton is in. If it is
an accepting state, then the property holds. Otherwise, it
does not. However, this can hardly work in practice. For
most of the properties it is possible to say before the end
of the simulation if a property holds or not. Consider the
example in equation 3. If at some clockk we find thatq
does not equal the value ofd at the previous clock, there
is no need to wait for the end of the simulation: we can
say right away that the property does not hold. A state
is unconditionallyaccepting only if it is accepting and all
reachable states are accepting. A state is unconditionally
non-accepting only if it is not accepting and neither is any
reachable state.

In order to verify if a property holds for a simulation, we
can construct the complement automaton and drive it by
the circuit signals. If at some point in time we enter an
unconditionally accepting state, we can signal an error
immediately, without waiting for the end of the simula-
tion. This is much more informative for the user who can
see exactly when the circuit did not behave as expected.
If at some point in time we enter an unconditionally non-
accepting state, then we can stop looking: the property
certainly holds for all possible traces with the current pre-
fix. Otherwise, we need to check at the end of the simu-
lation if the automaton is in an accepting state or not: if
it is, then we signal an error.

In the following, we extend the automata model (1) by al-
lowing non-determinism and (2) by introducing counters
in order to increase the performance, while keeping the
semantics unchanged.

A non-deterministic automaton is one that guarantees
that, at any time, there isat leastone active state. Such
an automaton is said to be similar to a propertyp if for
all tracest it has at least one accepting state if and only
if t |= p. There is no easy way to find the complement
of such an automaton: the equivalent deterministic au-
tomaton (by the usual conversion from non-deterministic

to deterministic automata) must be obtained and then its
complement is computed. The conversion from NFA to
DFA should be avoided as much as possible since, in the
worst case, the size of the resulted DFA is exponential in
the size of the NFA (Hopcroft and Ullman 1979).

The same definitions for unconditionally accepting and
non-accepting states apply on NFAs. However, there is a
subtle interpretation difference. Suppose we are given the
NFA similar to¬p and we want to check the validity of
propertyp for some simulation. If at some point in time
the automaton has one active unconditionally accepting
state, then we can immediately say that the property does
not hold. Otherwise, if at some point in timeall the active
states are unconditionally non-accepting, then we can be
certain that the property holds, no matter what else hap-
pens until the end of the simulation. Otherwise, we need
to look at the active states at the end of the simulation: if
at least one of them is accepting, then the property does
not hold for the simulation.

The addition of counters drastically decreases the size
of the automata generated for properties likeq[∗65000].
The idea is to identify an automaton state with a node
in a graphand a set of counters, each having a (nat-
ural number) value. In theory, this makes the automa-
ton infinite. The representation of an automaton without
counters, similar to the mentioned property, needs at least
1/2 MB of memory4, while one with counters requires
only a few bytes. The transition conditions can now con-
tain boolean terms in the form ofc == 0, wherec is
the name of a counter. They can also contain commands
that modify the value of a counter, either by setting it to
a constant (c = CT) or by decrementing it (− − c). The
accepting / non-accepting status of a state is determined
by its corresponding graph node, i.e. the counters values
do not discriminate between accepting and non-accepting
states.

An automaton with counters can always be transformed
to another one without counters by making explicit the
state families corresponding to graph nodes. Each state
family hasn1n2 · · ·nC members whereni is the maxi-
mum value of counteri plus one, andC is the number of
counters used.

The automata used inside our tool are generally NFAs
with counters. When the complement of an automaton is
needed, first its counters are removed and then it is con-
verted to a DFA. The complement of the a DFA is easy
to compute. Constructing the automaton as a DFA in the
first place is not a viable solution, since the constraints on
the combining algorithms would make them too compli-
cated.

4 IMPLEMENTATION OF AUTOMATA
COMBINING OPERATORS

The first subsection describes the building blocks from
which automata are constructed and the other subsections

4There are 65000 states, and for each state at least 50 bits are used
(16 bits for the state name, 32 bits for the name of the 2 transactions’
destinations and 2 bits for transactions’ conditions).

present the algorithms corresponding to few of the PSL
operators supported by our tool (see Appendix B of (Ghe-
orghita 2003)). As an exhaustive presentation of all of
them would exceed the limits of this paper, we consider
the following criteria for choosing some: to cover many
automaton model features, to be non-standard operators
(not part of regular expressions), to have interesting in-
terdependencies between them and to illustrate a variety
of algorithm design techniques that we have used.

4.1 Primitive Automata

The simplest property is a boolean expression: constant
(t |= TRUE and its complementt |= FALSE) or non-
constant (t |= b). Since these properties automata are
deterministic, it is easy to see their complements.

4.2 Fusion

One of the extensions to regular expressions is the fusion
operator. It is syntactically denoted using a colon (”:”).
The semantics is given by:

t |= p1 : p2 ≡ [∃k.0 ≤ k < n : t0,k |= p1 ∧ tk |= p2]
(8)

In order to find the rules for constructing the similar au-
tomaton, we consider two paths: one from the automaton
similar top1 and one from the automaton similar top2.

q1
0

s0−→ q1
1

s1−→ q1
2 · · · q1

k
sk−→ q1

k+1;

(q2
0

sk−→ q2
1

sk+1−−−→ q2
2 · · · q2

n−k−1

sn−1−−−→ q2
n−k) (9)

Here,q1
i are the states of the automaton similar top1 and

q2
i are the states of the automaton similar top2. Both

paths start from an initial state and end in an accepting
state. From definition 8, if two such paths exist, then
there must be a path in the automaton similar top1 : p2

that starts from an initial state, ends in an accepting state
and is driven byt.

We can do this by connecting stateq1
k to stateq2

1 with a
transition that is active only when bothq1

k → q1
k+1 and

q2
0 → q2

1 are active. The role of stateq1
k can be taken

by any state with a transition to an accepting state in the
first automaton. The role of theq2

1 state can be taken
by any state with a transition from an initial state in the
second automaton. In the end, we obtain the following
algorithm:

FUSION(A,B)
1 for each tA ∈ transitions[A]

such that type[target [tA]] = ACCEPT

2 do for eachtB ∈ transitions[B]
such that initial [src[tB]] = TRUE

3 do add new transitiont
4 src[t] ← src[tA]
5 target [t] ← target [tB]
6 cond [t] ← cond [tA] ∧ cond [tB]
7 for eachn ∈ nodes[A]
8 do if type[n] = ACCEPT

9 then type[n] ← NOT-ACCEPT

10 for eachn ∈ nodes[B]
11 do initial [n] ← FALSE

This algorithm has three important steps: add transitions
from A to B (lines 3–6), make the accepting states of
A non-accepting (thefor at line 7) and make the initial
states ofB normal states (thefor at line 10). The lines
3–6 are executed for each pair(tA, tB) such thattA is a
transition of automatonA that ends in an accepting state
andtB is a transition of automatonB that starts from an
initial state. A new transitiont with the same source astA
and the same destination astB is added. The condition
on t is the disjunction of conditions oftA andtB .

4.3 Fixed Times Consecutive Repetition

Fixed times consecutive repetition operator, introduced
in section 3.1, is denoted by[∗i], wherei represents the
number of repetitions. Instead of using the presented re-
duction rules, which will increase dramatically the size of
the resulted automaton, our algorithm uses the counter’s
feature of the automaton:

COUNTER-FIXED-REPETITION(A, i)
1 if i = 0
2 then return a new automaton with

only one accepting initial state
3 create counterc
4 set initial value ofc to i
5 for each t ∈ transitions[A]

such that type[target [t]] = accept
6 do for eachn ∈ nodes[A]

such that initial [n] = TRUE

7 do add new transitiontnew

8 src[tnew] ← src[t]
9 target [tnew] ← n

10 cond [tnew] ← cond [t] ∧ (c 6= 0)
11 act [tnew] ← act [t],−− c
12 cond [t] ← cond [t] ∧ (c = 0)

The line 12 ensures that the resulting automaton will ac-
cept a trace only ifi consecutive segments of the trace
have been accepted.

4.4 Weak Suffix Implication

Until now, we have tried to find only an automaton sim-
ilar to a propertyp. We need also to find the automaton
similar to the negated property as well.

The algorithm for weak suffix implication starts from
A ∼ p andB ∼ q and obtains the automaton similar
to ¬(p 7→ q). In order to derive the algorithm, we start
from the formal definition:

t |= ¬(p 7→ q) ≡ [∃j.0 ≤ j < |t| : t0,j |= p∧
[∀k.j ≤ k < |t| : tj,k |= ¬q]∧
[∃k.j ≤ k < |t| : [∀t′ : tj,kt′ |= ¬q]]] (10)

Suppose we have already computedC ∼ ¬q from B.
Cutting all outgoing transitions from non-accepting states
in C gives an automaton that evaluates the first term of the
conjunction. Marking as non-accepting all nodes that are
conditionallyaccepting gives an automaton that evaluates

the second term of the conjunction. These two transfor-
mations must be done in order to create an automaton that
evaluates the conjunction. The algorithm is:

WEAK-IMPLICATION(A, B)
1 C ← NEGATE(B)
2 for each tC ∈ transitions[C]
3 do if type[src[tC]] = NON-ACCEPT

4 then removetC
5 for eachnC ∈ nodes[C]
6 do if type[nC] = NON-ACCEPT

7 then type[nC]] = UNC-NON-ACCEPT

8 if type[nC] = ACCEPT

9 then type[nC]] = NON-ACCEPT

¤ Only UNC-ACCEPTremain accepting
10 FUSION(A,C)

The procedureNEGATE transforms an automaton into its
complement by first transforming it from NFA to DFA
and then flip the accepting state. Because there is no way
to transform a NFA with counters into a DFA while pre-
serving counters, these must not be present in automaton
B. We can ensure this by providing alternative construc-
tion methods wherever counters are usually the best solu-
tion.

5 AUTOMATA OPTIMIZATION

The automata optimizations can be grouped into: transi-
tions merging, reachability analysis, unconditional states
melting and boolean conditions simplification.

Whenever there are two parallel transitions without com-
mands attached to them (like setting or decrementing a
counter), they can be fused together by using as the result-
ing condition the disjunction of the original conditions.

All states that are not reachable from at least an initial
state can be removed together with their incoming and
outgoing transactions.

All unconditional accepting states are equivalent; all un-
conditional non-accepting states are equivalent. This
means that they can be simply melt together and all out-
going transitions replaced with a loop transition that is
always active. Because unconditional tags are sometimes
lost (seeFUSION), they need to be restored by another
reachability analysis.

In order to simplify the boolean conditions, Quine Mc
Cluskey algorithm was used.

All these optimizations can be applied after each combi-
nation phase or only on the final result. Applying the op-
timizations after each combination step means a lot of ex-
tra work. Delaying until the result automaton is obtained
has the potential of letting the automaton dimension to
explode and, hence, the running time is even worse on
complex properties. In order to improve speed perfor-
mance, we are considering to develop smart heuristics
that decide when to apply certain optimizations. These
heuristics will replace the simple rules “always” and “just
at the end”.

Preprocessor (cpp / spp)
PSL Code

Parser

Preprocessed
 PSL code

Validation Engine
AST

Reduction Engine
Validated AST

Conversion Engine
Reduced AST

Optimization Engine
Automata List

Language 1

Automata List

Language 3 Language 2

Backend

Figure 1. Tool architecture

6 TOOL ARCHITECTURE

Figure 1 shows the internal architecture of our tool. The
tool consists of a sequence of several modules, each rep-
resenting a translation phase. Different back-ends may
be added to this tool in order to dump the automata into
different target languages with specific syntax for au-
tomata support. PSL provides macro-processing capa-
bilities to facilitate the definition of properties. It sup-
portscppstyle pre-processing directives (e.g.#define ,
#ifdef , #else , #include and#undef) and special
macros for%for and%if that are used to conditionally
or iteratively generate PSL properties.

Our tool usescpp (FSF 2004) to handle the pre-
processing directives. For the special macros, an inter-
nal preprocessor that extendvpp (Thaker 1996) is used.
More information about its preprocessor may be found in
Appendix C of (Gheorghita 2003).

The parser converts the input PSL files into the corre-
sponding Abstract Syntax Tree (AST). During the con-
version, some checks for the validity of input are done
((Gheorghita 2003) presents all these checks).

The validation engine executes all the checks which
could not be handled during the parsing phase. These
checks may be general checks or specific checks, which
depend on the target language (on which the resulted au-
tomata are dumped). New checks are easy to be written
and added to be executed by the engine.

The reduction engine applies the PSL reduction rules
(presented in section 3.1) on the current AST. Its output
is also an AST, in which only the basic PSL operators
(and counters operators, if they are enabled) are used.
The resulted AST may have more nodes than the origi-
nal one, but the engine which converts it into automata is
simpler because it must handle a smaller number of oper-
ator types.

Theconversion enginegenerates automata based on the
input AST. The resulted automata respect the semantics
described in section 3.2. The engine traverses the AST
in post-order. For every node reached, it builds an au-
tomaton, based on the automata generated for its children

Table 1. Tools comparison.
Our tool FoCs HOL

real 11.77s 3.10s > 1 day
Runtime user 11.68s 0.60s N/A

system 0.03s 0.14s N/A
States 316 310 N/A

Automata 172 77 N/A

and the information stored in the node. If the node is a
tree leaf (has no children), a simple automaton is gener-
ated, as it is shown in section 4.1. The algorithm used to
combine the children’s automata is chosen based on the
node internal information, which is an operator. Sections
4.2-4.4 present examples of operators and their associated
algorithms.

The quality of conversion from PSL to automata is im-
proved by theoptimization engine that executes all the
optimizations presented in section 5.

A backend is composed by several restrictions and a set
of printing functions. The restrictions define what types
of automata are supported by the backend language (e.g.
Verilog supports only DFA). The tool adapts all the au-
tomata in order to respect the restrictions imposed by the
backend. The printing functions dump the content of data
structures into the backend language. Usually, having
good knowledge about the destination language, a back-
end can be written in less than two days.

7 TOOL PERFORMANCE

In order to evaluate our tool, it was run to convert a com-
mercial project that consists in 77 PSL properties. An
AMD Athlon XP 2.2GHz, 1024MB RAM running Fe-
dora Linux was used. Table 1 presents the comparison
between our tool and the two existing tools, FoCs and a
PSL embedding in HOL (Gordon,et al., 2003).

The output generated by FoCs is very intricate and diffi-
cult to be understood by engineers, as it contains a com-
plicatedif/then/else structure where it is not easy
to make the difference between automata’s states and
transitions. Opposite to this approach, our tool gener-
ates every automaton as a simpleswitch structure used
to select the automaton state. The clarity of the gener-
ated code is enhanced by the fact that, instead of using a
complicate automaton for a PSL property, multiple sim-
ple automata are used. This explains the big difference
between the number of automata generated by our tool
and those generated by FoCs, while that the number of
states is almost the same. FoCs uses long and difficult to
understand identifiers to name the generated structures,
while we tried to select intuitive names for the identifiers.

The HOL PSL example is not very developed, as it ac-
cepts only a very simple subset of PSL grammar (ac-
tually, it supports only SEREs). Considering this, only
30% from our input could be processed by it. The execu-
tion time is very long (several days), compared with our
tool’s and FoCs’. Nevertheless, the generated output is
very simple, efficient and easy to understand.

8 CONCLUSIONS AND FURTHER WORK

This paper presents a tool that translates PSL prop-
erties into checkers written in languages suitable for
simulation-environments. Currently, two different lan-
guages are supported, e (Verisity 2002) and Verilog
(IEEE 2001), but the tool is easily retargetable to other
languages. Adding a backend for another language
amounts merely to write a set of printing functions. Our
tool runs five orders of magnitude quicker than HOL PSL
scripts, and only four times slower than the commercial
tool FoCs. Compared with FoCs, our tool’s output is sim-
pler and easier to be understood by engineers.

In the future, we plan to extend the PSL grammar subset
supported by our tool and slowly migrate to the new se-
mantics defined in the 1.1 version of the PSL standard.
Furthermore, we are interested in improving the tool’s
execution time. One step in this direction is the devel-
opment of the heuristic mechanism that decides when au-
tomata optimizations should be applied.

Another direction is to build up the level of confidence in
our tool. We believe that testing the orrectness against a
reference tool (e.g. HOL PSL scripts) has the potential of
revealing bugs. Proving the correctness of the construc-
tion methods by automatic reasoning is another step to
ensure the correctness of checkers generator. These two
methods should complement each other.

REFERENCES

ABARBANEL , Y. andET AL. (2000). FoCs: Automatic
generation of simulation checkers from formal spec-
ifications. InProc. of the 12th Conf. Computer Aided
Verification. Springer LNCS,vol. 1855. 538–542.

ACCELLERA. (2003). Accellera property specification
language reference manual version 1.01.

BEER, I. andET AL. (2001). The Temporal Logic Sugar.
In Proc. of the 13th Conference in Computer Aided
Verification. Springer LNCS,vol. 2102. 538–542.

FSF. (2004). cpp, GNU C Preprocessor.
GEIST, D. and ET AL. (1999). A methodology for the

verification of a system on chip. InProc. of the 36th
Design Automation Conference. 574–579.

GHEORGHITA, S. V. (2003). The art of translating Sugar
to an Automata Language. M.Sc. thesis, CS Depart-
ment, Politehnica Univ. of Bucharest, Romania.

GORDON, M. (2004). PSL semantics in higher order
logic. In 5th Int Wsh. on Designing Correct Circuits.

GORDON, M., HURD, J. and SLIND , K. (2003). Exe-
cuting the formal semantics of the accellera property
specification language by mechanised theorem prov-
ing. In Proc. of the 12th Conf. on Correct Hardware
Design and Verification Methods. Springer LNCS,
vol. 2860. 200–215.

HOPCROFT, J. and ULLMAN , J. (1979). Introduction
to Automata Theory, Languages and Computation.
Addison-Wesley Publish Company.

IEEE. (2001). IEEE standard 1364-2001.
THAKER, H. M. (1996). vpp, a Verilog Preprocessor.
VERISITY. (2002). e language reference manual.

