
Strongest Postcondition of Unstructured Programs

Radu Grigore
University College Dublin

Julien Charles
University College Dublin

julien.charles@gmail.com
Fintan Fairmichael

University College Dublin
fintan.fairmichael@ucd.ie

Joseph Kiniry
University College Dublin
joseph.kiniry@ucd.ie

ABSTRACT
To avoid exponential explosion, program verifiers turn the
program into a passive form before generating verification
conditions. A little known fact is that the passive form
makes it easy to use a strongest postcondition calculus to
derive the verification condition. In the first part of this
paper, the passivation phase is defined precisely enough to
allow a study of its algorithmic properties. In the second
part, the weakest precondition and strongest postcondition
methods are presented in a unified way and then compared
empirically.

Categories and Subject Descriptors
F3.1 [Theory of Computation]: Logics and Meanings of
Programs—Mechanical verification

Keywords
verification condition generation, algorithms, efficiency

1. INTRODUCTION
Program verifiers are not widely used because annotations

are hard to write, but also because verifiers are perceived as
slow compared to other tools that developers use regularly,
such as compilers. This paper analyzes from the point of
view of efficiency some of the problems a program verifier
must solve.

Flanagan and Saxe [7] noticed that a verification condition
(VC) built from a passive program is much smaller than one
built from a program with assignments, so they gave an algo-
rithm that obtains a passive form and they implemented it in
ESC/Java [5, 4]. Barnett and Leino [2] informally describe
an improved algorithm that is implemented in Spec] [3, 2].
Surprisingly, neither give a formal definition of what a pas-
sive form is.

Once the program is passive the actual VC generation is
performed, using either a weakest precondition or a strongest
postcondition calculus. The VC is then sent to a theorem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP ’09, July 6 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-540-6/09/07 ...$10.00.

program→ statement+

statement→ label : command (goto | return) ;
goto→ (goto label (, goto label)∗

command→ assignment | assumption | assertion
assignment→ id := expression ;
assumption→ assume expression ;

assertion→ assert expression ;

Figure 1: A subset of Boogie.

prover like Z3 [18]. To our knowledge, no empirical study
relates the chosen calculus to proving time. Contributions:

• a precise definition for passive form that suggests two
notions of optimality (Section 3)

• a fast algorithm for deriving one optimum (Section 3.1)
and evidence that there is no fast algorithm for deriv-
ing the other optimum (Section 3.2); an implementa-
tion of the fast algorithm in FreeBoogie [8] and an ex-
perimental comparison with the algorithm of Flanagan
and Saxe [7] (Section 3.3)

• a unified theoretical treatment of the weakest precon-
dition and of the strongest postcondition method that
makes it easy to compare them (Section 4); an imple-
mentation of both methods in FreeBoogie (Section 4.1)
and an experimental comparison on the effect they
have on the theorem prover time (Section 4.2)

2. BACKGROUND
Program verifiers, like ESC/Java and Spec], check if code

and annotations agree. The code and annotations undergo
a sequence of transformations into simpler and simpler lan-
guages until eventually a first order logic (FOL) formula is
obtained, which is valid ideally if and only if there are no
disagreements in the high-level code. A theorem prover then
tries to establish whether the formula is indeed a theorem
or not.

This paper discusses the last two of these transformations,
getting rid of assignments and building a FOL formula. The
input of the first of these two phases is given in a subset of
Boogie [16] that appears in Fig. 1. An expression is a FOL
formula. The goto is nondeterministic. Control-flow cycles
are removed in a previous phase, which is not discussed in
this paper.

In this paper we will be sloppy and identify programs with
their flowgraphs. A flowgraph P = (V,E, n0) has a set of
nodes V , each of them being a command, a set of edges E,



a: x := fresh ; goto b, c;
b: assume ¬even(x); goto d;
c: assume even(x); goto e;
d: x := x + 1; goto e;
e: assert even(x);

a

b c

d

e

Figure 2: An example of a Boogie program

a

b c
d e

f g

(a)

a

b
c

d
e

(b)

0

1

2

3

[1]

[2, 0]

[3, 1]

[ ]

(c)

Figure 3: Various interesting special cases

each of them representing a goto, and an initial node n0,
which is the command in the first statement. All flowgraphs
are acyclic and all nodes are reachable from the initial node.
We say that a program is structured when its flowgraph is
series–parallel. We say that a node is a write node with
respect to variable x if it is an assignment whose left-hand
side is variable x. We say that a node is a read node with
respect to variable x if variable x appears in its expression.
Most of the time the variable is clear from the context, so
we omit the phrase “with respect to variable x.” We say that
a node is a copy node if it is an assignment with the form
xi := xj . See Table 1 for other notations.

As a reminder, a graph is a (two terminal) series–parallel
graph [20, 10] if it can be obtained from one edge between
two nodes by operations of subdividing and doubling edges.
Note that programs composed using sequential composition
and nondeterministic choice have series–parallel flowgraphs.

The running example in Fig. 2 illustrates the basic no-
tations used throughout the paper. The Boogie code cor-
responds to the high-level statement “ if (¬even(x)) ++x;”.
The flowgraph tells us that nodes a and d write to variable x
and may also read it, while nodes b, c, and e may only read
it. The special cases in Fig. 3 are used to illustrate various
points later on. Figure 3a shows a flowgraph whose nodes
all write variable x and may also read it. Figure 3b shows
a flowgraph with 7 nodes: The nodes a, b, c, d, and e all
write to variable x and they may also read it; there are also
two unnamed nodes that read the variable x, one has nodes
b and e as predecessors and the other has nodes c and d
as predecessors. The use of dotted edges to represent un-
named nodes may seem confusing at first, but imagine how
Fig. 3c, which has 14 nodes, would look without this con-
vention. The numbers on the left in Fig. 3c identify nodes
in the top–down order; the lists on the right give the dotted
neighbors and each list is decreasing.

3. OPTIMAL PASSIVE FORM
The main purpose of this section is to give a precise for-

mulation for the problem of finding a good passive form.

Example 1. A passive form of the program in Fig. 2 ap-
pears in Fig. 4. It is obtained by introducing versions 1 and 2
of the variable x and by inserting the copy command f .

Example 1 contains only one variable and this is the case
we shall analyze in detail. Multiple variables do not in-

a: x1 := fresh; goto b, c;
b: assume ¬even(x1); goto d;
c: assume even(x1); goto f;
d: x2 := x1 + 1; goto e;
e: assert even(x1);
f : x2 := x1; goto e;

a

b c

d

e

f

Figure 4: A passive form for the program in Fig. 2

troduce any new complications: A program can be made
passive with respect to each of its variables in turn, while
considering the others to be constants.

Definition 1. A program is passive when on all execution
paths each variable is written to at most once.

Remark 1. Obtaining a passive form is similar to auto-
matically deriving a functional equivalent of a loop-less im-
perative program. The remaining assignments, which are
eventually transformed into assumptions, can be seen as let
bindings.

The passive form of a program P ′ is an equivalent pro-
gram P that is passive. If there are execution paths in pro-
gram P ′ that write to variable x multiple times then those
writes must be changed to write to distinct variables in pro-
gram P . We denote the variables of program P by xi where
i is some integer and say that xi is version i (of variable x).
To maintain the semantics, each read from variable x must
be replaced by a read from the latest written version. As
Example 1 illustrates, it is necessary sometimes to alter the
structure of the program, and in current approaches [7, 2]
this is always done by inserting copy commands of the form
xi := xj . The following definition makes these notions pre-
cise.

Definition 2. A passive program P = (V,E, n0) is a pas-
sive form of the program P ′ = (V ′, E′, n′0) when there exists
a mapping c : V ′ → V , a write-version function w : V → N,
and a read-version function r : V → N such that

• command structure is preserved: the command c(n)
is obtained from command n by replacing each occur-
rence of variable x by some variable xi

• the new nodes are copy commands: all commands in
C = V − c(V ′) have the form xi := xj

• the flow structure is preserved: there is an edge m→ n
in program P ′ if and only if there is a path c(m) ;C

c(n) in program P

• the initial node is preserved: c(n′0) = n0

• writes and reads are confined: each command n in
program P may only read version r(n) and may only
write version w(n)

• the read version is always the latest written version:
w(m) = r(n) for all edges m→ n in program P

The requirement that program P is passive can be ex-
pressed as a constraint on the write-version function w.



Table 1: Notations used throughout the paper
notation description

>,⊥ true, false, respectively
m→ n directed edge from node m to node n
m ;C n path from m to n whose intermediary nodes are from set C
, , , read&write, read-only, copy, and non flowgraph node, respectively
m n read node with incoming edges from the write nodes m and n

[ψ] 1 if ψ is true, 0 otherwise

Proposition 1. If the write-version function w is a wit-
ness that program P is a passive form then the existence of
a path m ; n where both m and n are write nodes implies
that w(m) 6= w(n).

Proposition 1 suggests that a“passive form”may be called
more explicitelly“distinct-version passive form”. Definition 2
is very general. The passive forms obtained by previous ap-
proaches [7, 2] all satisfy a stronger definition that corre-
sponds to the intuition that versions increase in time.

Definition 3. An increasing-version passive form is a pas-
sive form such that there is a witness write-version func-
tion w with the property that w(m) < w(n) whenever there
is a path m ; n from a write node m to another write
node n.

Programs have multiple passive forms, some better than
others. There are two obvious notions of optimality.

Definition 4. A passive form is version-optimal when it
uses as few variable versions as possible. A passive form is
copy-optimal when it uses as few copy commands as possi-
ble.

Remark 2. An increasing-version passive form that is both
version-optimal and copy-optimal does not always exist (see
Fig. 3a). Also, if the increasing-version restriction is dropped
it is sometimes possible to obtain passive forms with fewer
copy nodes (see Fig. 3b).

3.1 The Version-Optimal Passive Form
This section presents a simple algorithm for obtaining a

version-optimal passive form. Since it is simpler than the
algorithm of Barnett and Leino [2] and guarantees some form
of optimality (unlike the algorithm of Flanagan and Saxe [7])
it should be the algorithm of choice for implementations.

Lemma 1. The number of versions used by a passive form
program P is greater or equal to the number of write nodes
on any execution path in the original program P ′.

Consider now the following labeling of the original flow-
graph.

r′(n) = max
m→n

w′(m) (1)

w′(n) = r′(n) + [the node n writes the variable x] (2)

These values can be used to derive a version-optimal passive
form. The maximum value k taken by the function w′ cor-
responds to the number of writes on some execution path
and therefore to the lower bound given by Lemma 1. If

we take w(c(n)) = w′(n) then the passive form will write
versions 1, . . . , k. Similarly, if we take r(c(n)) = r′(n) then
the passive form may read versions 0, 1, . . . , k. Version 0 is
never written. If it is read then it provides a nondetermin-
istic value of a certain type. Instead of having a version 0
for each variable x we can introduce one global uninitial-
ized variable. This leads to a passive form that uses only k
versions and is therefore optimal.

Whenever the original flowgraph has an edge m → n
such that w′(m) = r′(n) we keep an edge c(m) → c(n)
in the passive form. Whenever the original flowgraph has
edges m → n such that w′(m) 6= r′(n) we introduce a copy
node p in the passive form. We ensure that the passive
form has paths c(mi) ; c(n) by adding edges c(m) → p
and p→ c(n). We take r(p) = w′(m) and w(p) = r′(n).

We have therefore proved the following theorem.

Theorem 1. The functions r′ and w′ from (1) and (2)
determine a version-optimal passive form, which contains
O(|E|) copy commands.

The proof of Theorem 1 can be turned into a program
that mutates the flowgraph into a passive form. The val-
ues r′(n) and w′(n) are computed by a pair of mutually
recursive memoized functions that follow (1) and (2). (See
Fig. 5.)

Theorem 2. The algorithm in Fig 5 constructs a version-
optimal passive form in Θ(|V |+ |E|) time and Θ(|V |) space.
The number of copy commands is O(|E|).

Remark 3. It is easy to slightly decrease the number of
copy commands inserted by the algorithm in Fig. 5. A possi-
bility is to introduce only one copy command for each family
of edges m1 → n, · · · ,mk → n that have w′(mi) = wm 6=
r′(n) for 0 ≤ i < k and some constant wm.

3.2 The Copy-Optimal Passive Form
We saw that finding a version-optimal passive form is

rather easy. In contrast, finding a copy-optimal passive form
seems rather hard. This is more evidence that the algorithm
in Section. 3.1 should be the algorithm of choice in practice.

Theorem 3. The problem of finding a copy-optimal pas-
sive form among the increasing-version passive forms is NP-
hard.

Proof. We will prove that if we can find a copy-optimal
passive form efficiently then we can also find a maximum in-
dependent node set efficiently. As a reminder, a set of nodes
is independent when its nodes are pairwise non-adjacent.
Finding such a set with maximum cardinality is the same
as finding a maximum clique in the complement graph, and



Read(n)

� memoized (cache results)
1 r := 0
2 for m ∈ Predecessors(n)
3 do r := max(r,Write(m))
4 return r

Write(n)

� memoized (cache results)
1 r := Read(n)
2 if Is-Write(n)
3 do r := r + 1
4 return r

Passivate(n)

1 for n ∈ V
2 do for reads: x→ xRead(n)

3 for writes: x→ xWrite(n)

4 for (m→ n) ∈ E
5 do if Write(m) 6= Read(n)
6 then p := (xRead(n) := xWrite(m))
7 replace m→ n by m→ p and p→ n

Figure 5: Algorithm for finding a version-optimal
passive form

a b c
aO

aI

bO

bI

cO

cI

Figure 6: Reduction from Maximum Independent
Node Set.

the latter is known to be NP-hard since the dawn of NP-
completeness [14].

Figure 6 illustrates the transformation. Each node n in
the original graph corresponds to the write nodes nI , nO,
the read node nR, and the edges nI → nR and nO → nR.
(In Fig. 6 the node nR is represented by a dotted line joining
nI and nO.) Each non-flowgraph edge m—n corresponds to
the edges mO → nI and nO → mI . Consider an arbitrary
write-function w on the constructed graph. The number
of necessary and sufficient copy operations is

P
n[w(nI) 6=

w(nO)]. Therefore, finding a copy-optimal passive form is
equivalent to finding a function w that minimizes the pre-
vious sum. This suggests how to transform a passive form
into an independent set: Include the original node n in the
set when w(nI) = w(nO).

A node set constructed this way is always independent
because whenever there was an original edge m—n we have
w(mO) < w(nI) and w(nO) < w(mI), which together imply
that at least one of w(mO) 6= w(mI) and w(nI) 6= w(nO)
must be true. Furthermore, if there is no non-flowgraph
edge m—n, then there is no path between the correspond-
ing nodes and hence no restriction on the write-version func-
tion.

Conjecture 1. The problem of finding a copy-optimal

passive form is NP-hard.

This conjecture is supported by the observation that for
flowgraphs in the family illustrated by Fig. 3c it is harder
to find a copy-optimal passive form if we restrict the search
to increasing-version passive forms. The flowgraphs consist
of write nodes aligned in two chains and read nodes that
have one parent from each chain. In the rest of this section
N stands for the number of write nodes and M stands for
the number of read nodes in such a graph. The task is to
select as many dotted edges (read nodes) as possible that can
simultaneously have the same version at their endpoints. In
the increasing-version case two dotted edges can be selected
simultaneously if they don’t intersect; in the distinct-version
case two dotted edges can be selected if they don’t intersect
at one endpoint.

The increasing-version case can be solved, as Fig. 3c sug-
gests, by sorting the adjacency lists in decreasing order,
concatenating them, and finding a longest increasing sub-
sequence. The best known algorithm for the last step [13]
works in O(M lg lgM) time. The distinct-version case is
exactly the problem of finding a maximum bipartite match-
ing, for which the best known algorithms [12, 11] work in

O(min(M
√
N,N2.38)) time. Therefore, the best algorithms

known to solve this particular family of instances are faster
for the increasing-version case than for the distinct-version
case.

3.3 Experiments
Figure 7 compares the results of the passivation algorithm

given by Flanagan and Saxe algorithm with the version-
optimal passive form (Section 3.1). If for N tests the al-
gorithm of Flanagan and Saxe generated i versions and the
FreeBoogie algorithm generated j versions, then this is rep-
resented by a circle centered at (i, j) with a radius propor-
tional to lgN . The experiments use 84% of the implemen-
tations in the Boogie benchmark [17], because we identified
the others as unstructured [20]. The Flanagan–Saxe algo-
rithm is defined on the structure of the ESC/Java inter-
mediate language. This structure can be reconstructed as
a side-effect of recognizing series–parallel flowgraphs. The
ESC/Java intermediate language may occasionally lead to
flowgraphs that are not series–parallel, because it uses ex-
ceptions as a control flow mechanism.

For 70% of the variables in the Boogie benchmark both
algorithms say that one version is enough. For the other
30% variables the Flanagan–Saxe algorithm introduces on
average 46% more versions than needed.

It is interesting to note that for randomly generated flow-
graphs the difference between the two algorithms is much
bigger: Both algorithms say that only one version is needed
in less that 1% of situations, while for the others the al-
gorithm of Flanagan and Saxe introduces on average 160%
more versions than needed.

Full experimental results are available on the Internet [1].

4. WEAKEST PRECONDITION VERSUS
STRONGEST POSTCONDITION

This section uses Hoare triples to define correctness of a
program and proceeds by presenting two methods for de-
riving annotations, based on weakest preconditions and, re-
spectively, strongest postconditions. The two methods lead
to equivalent but structurally different VCs.



Flanagan–Saxe version count

F
re

eB
o
o
g
ie

v
er

si
o
n

co
u
n
t

1

4

7

10

13

16

1 4 7 10 13 16 19 22 25 28

Figure 7: Version count experimental comparison

After the passive form is obtained all assignments x := e
are transformed into assumptions of the form assume x=e.
Now, a command is either assert ψ or assume ψ, where
ψ is some FOL formula. The semantics of these commands
can be defined using Hoare triples as follows.

(α ∧ ψ)⇒ β

{α} assume ψ {β}
α⇒ (ψ ∧ β)

{α} assert ψ {β} (3)

This tells us how to compute the weakest precondition
given the postcondition and how to compute the strongest
postcondition given the precondition.

wp (assume ψ) β = ψ ⇒ β (4)

wp (assert ψ) β = ψ ∧ β (5)

sp ( ψ) α = α ∧ ψ (6)

Note that the simpler form of the sp predicate transformer
comes at a price. The triple {wp n β} n {β} holds for all
commands n, while the triple

{α} assert ψ {sp (assert ψ) α}

leaves us the proof obligation α⇒ ψ. An edge m→ n from
the node m to the node n in the flowgraph imposes the proof
obligation βm ⇒ αn, where βm is the postcondition of the
node m and αn is the precondition of the node n.

Definition 5. A program is correct when it is possible to
attach to each command n a precondition αn and a post-
condition βn such that

• the precondition α0 of the initial node is valid,

• {αn} n {βn} is valid, for all commands n, and

• βm ⇒ αn is valid, for all edgesm→ n in the flowgraph.

When the wp predicate transformer is used, the precon-
ditions and the postconditions are computed as follows:

βm =
^

m→n

αn (7)

αm = wpm βm (8)

These equations make sure that proof obligations imposed
by commands and proof obligations imposed by flowgraph

∧
⇒

∨
∧

∧
ψb

ψd

∧
∧

∧
> ψa

ψc

ψf

ψe

Figure 8: Data structure for the VC in (13)

edges are valid. It remains to be checked whether the pre-
condition of the initial node is valid. Hence, the VC is sim-
ply vcsp = α0.

When the sp predicate transformer is used, the precondi-
tions and the postconditions are computed as follows:

αn =

(
> if the node n is initialW

m→n βm otherwise
(9)

βn = sp n αn (10)

These equations make sure that α0, proof obligations im-
posed by flowgraph edges, and proof obligations imposed by
assumptions are valid. Proof obligations imposed by asser-
tions remain to be checked. Hence, the VC is

vcsp =
^

n is an
assertion

(αn ⇒ ψn) (11)

Remark 4. Both methods for obtaining a VC are com-
plete, meaning that if the program is correct then the VC is
valid. The proof is standard.

Example 2. For the code in Fig. 4 the weakest precondi-
tion method and the strongest postcondition method yield
equivalent but different VCs:

vcwp =(x0 = fresh)⇒`
(¬even(x0)⇒ (x1 = x0 + 1)⇒ (even(x1) ∧ >))

∧ (even(x0)⇒ (x1 = x0)⇒ (even(x1) ∧ >))
´

(12)

vcsp =
`
(> ∧ (x0 = fresh) ∧ ¬even(x0) ∧ (x1 = x0 + 1))

∨ (> ∧ (x0 = fresh) ∧ even(x0) ∧ (x1 = x0))
´

⇒ even(x1)

(13)

4.1 Implementation and
Verification Condition Size

The implementation uses three functions, Vc, Pre, and
Post, that follow (11), (9), and (10), respectively. To avoid
unnecessary work, the last two are memoized. (See Fig. 9.)

Example 3. The data structure built by such an imple-
mentation for the VC given in (13) appears in Fig. 8. Note
that βa = > ∧ ψa is shared because of memoization.



Pre(n)

� memoized (cache results)
1 p := ∅
2 for m ∈ Parents(n)
3 do p := p ∪ {Post(m)}
4 return Or(p)

Post(n)

� memoized (cache results)
1 return And(Pre(n),Formula(n))

Vc()

1 r := ∅
2 for n ∈ V
3 do if Is-Assertion(n)
4 then r := r ∪ {Implies(Pre(n), ψn)}
5 return And(r)

Figure 9: VC computation via SP

Theorem 4. The algorithm inf Fig. 9 computes the VC
in O(|V |+ |E|) time. If the program contains no assertions
then the lower bound Ω(|V |) is attained.

Proof. Because of memoization the functions Pre and
Post are called at most once for each node. The function
Pre analyzes all the incoming edges of the node it was called
for, so in the worst case it looks once at each edge in the
flowgraph. If there are no assertions then the runtime is
dominated by the loop in Vc that checks there are no asser-
tions.

Theorem 5. The algorithm in Fig. 9 computes a VC with
size O(|V |+ |E|+ |Ψ|), where |Ψ| is the space needed to rep-
resent all the expressions that appear in the program. If the
program contains no assertions then the lower bound Ω(1)
is attained.

Proof. Each execution of the function Pre creates one
new node that contains as many links to children as there
are predecessors in the flowgraph. Each execution of the
function Post creates one new node with two children, one
of which is an expression from the program. If there are no
assertion then vcsp = ⊥.

Remark 5. Results similar to Theorem 4 and Theorem 5
hold for the analogous implementation of the weakest pre-
condition method.

4.2 Experimental Comparison
Figure 10 shows the ratios between the proving times re-

quired for weakest precondition and strongest postcondition.
The tests were ran using the Z3 v1.2 prover on a single core
of a dual-core AMD Opteron 2218 (2 X 2.6GHz) with 16GiB
of DDR2-667 RAM. Both methods perform similarly, as can
be seen by the relative symmetry of the graph. Weakest
precondition does mildly better however, as evidenced by
the slight shift to the right. It is interesting to note that in
over 40% of the test cases the time ratio between the worse
method and the better method is > 2. These are the cases
outside of the shaded area.

Full experimental results are available on the Internet [1].

ln sp time
wp time

cases

50

100

150

200

250

-6 -4 -2 0 2 4 6

Figure 10: Proving time experimental comparison

5. RELATED WORK
The passive form used for program verification resembles

the dynamic single assignment (DSA) form used in the com-
piler community to facilitate optimizations. Two main con-
cerns in deriving a DSA form are how to deal with arrays
and how to deal with loops. In the program verification
setting arrays are naturally not a problem since the update
and select operations are axiomatized anyway for the pur-
pose of verification; in the program verification setting loops
are naturally not a problem since they are replaced by invari-
ants anyway for the purpose of verification. Recent work on
computing the DSA form [21] handles these two problems
and identifies the trick of inserting copy operations (used
earlier by Flanagan and Saxe [7]) as the key to obtaining
a scalable algorithm for deriving the DSA form. There are
no theoretical guarantees on achieving a minimum number
of versions or a minimum number of copy operations. The
number of copy operation is brought down by a second, op-
timizing step, the result of which is analyzed empirically.
To the best of our knowledge the problem of obtaining a
DSA form is also not formally defined. (Informal definitions
give more leeway for out-of-the-box thinking that can lead
to interesting new results, while formal definitions facilitate
a more precise analysis of what is going on. In our opinion,
the latter is important when studying program verifiers, and
that is why we give Definition 2.)

ESC/Java can use both the strongest postcondition [7]
and the weakest precondition method [15], but not for arbi-
trary acyclic flowgraphs. Note that [7] describes a method
analogous to our strongest postcondition method but only
uses the term “outcome predicate”. Boogie uses only the
weakest precondition method and can treat unstructured
programs [2].

Strongest postcondition was discussed before in the con-
text of a simple language similar to ours in relation to pred-
icate abstraction [6] (but only for structured programs) and
in relation to proof reuse [9] (but not shown sound). It
was also formalized in the context of structured Java byte-
code [19].

6. CONCLUSIONS AND PROBLEMS
The precise definition of passive form led to a simple, fast,

and slightly better algorithm for passivation. The weakest
precondition method yields slightly faster prover response
times.

The following problems remain open:



• Is the problem of finding a copy-optimal passive form
NP-hard?

• Is it always possible to find a passive form that is both
version-optimal and copy-optimal?

• Find an approximation algorithm for the problem of
finding a copy-optimal passive form.

• Quickly decide based on the structure of the program if
the weakest precondition method or the strongest post-
condition method should be used to minimize prover
time.

• Exploit the structure of vcsp to better handle big VCs.

Acknowledgments.
The authors thank Mikoláš Janota for discussions, Mike
Barnett and Rustan Leino for promptly replying to queries
about [2], Joseph Cheriyan for pointing out reference [11],
and the reviewers for contributing to the quality of the pre-
sentation. This work is funded by the Information Society
Technologies programme of the European Commission, Fu-
ture and Emerging Technologies under the IST-2005-015905
MOBIUS project. The article contains only the authors’
views and the Community is not liable for any use that may
be made of the information therein. This work is partially
supported by an EMBARK Scholarship from the Irish Re-
search Council in Science, Engineering and Technology.

7. REFERENCES
[1] Experimental results. http://groups.google.com/

group/freeboogie/web/spup-experimental-data.

[2] M. Barnett and K. R. M. Leino. Weakest-precondition
of unstructured programs. Workshop on Program
Analysis for Software Tools and Engineering, pages
82–87, 2005.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview.
Construction and Analysis of Safe, Secure and
Interoperable Smart devices, 3362, 2004.

[4] D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java
and JML. Construction and Analysis of Safe, Secure
and Interoperable Smart devices, 3362:108–128, 2005.

[5] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. Saxe, and R. Stata. Extended static
checking for Java. ACM SIGPLAN Notices,
37(5):234–245, 2002.

[6] C. Flanagan and S. Qadeer. Predicate abstraction for
software verification. In POPL ’02: Proceedings of the
29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 191–202,
New York, NY, USA, 2002. ACM.

[7] C. Flanagan and J. B. Saxe. Avoiding exponential
explosion: generating compact verification conditions.
Symposium on Principles of Programming Languages,
pages 193–205, 2001.

[8] R. Grigore. The web home of FreeBoogie. http:
//kind.ucd.ie/products/opensource/FreeBoogie/.

[9] R. Grigore and M. Moskal. Edit and verify. In
S. Ranise, editor, Proceedings of the 6th International
Workshop on First-Order Theorem Proving, pages
101–113. University of Liverpool, Sept. 2007.

[10] J. L. Gross and J. Yellen. Handbook of graph theory.
CRC Press, 2004.

[11] N. J. A. Harvey. Algebraic structures and algorithms
for matching and matroid problems. In Foundations of
Computer Science, pages 531–542, 2006.

[12] J. E. Hopcroft and R. M. Karp. An n2.5 algorithm for
maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2:225, 1973.

[13] J. W. Hunt and T. G. Szymanski. A fast algorithm for
computing longest common subsequences.
Communications of the ACM, 20(5):350–353, 1977.

[14] R. M. Karp. Reducibility among combinatorial
problems. Complexity of computer computations,
pages 85–104, 1972.

[15] K. R. M. Leino. Efficient weakest preconditions.
Information Processing Letters, 93(6), 2005.

[16] K. R. M. Leino. This is Boogie 2. 2008.

[17] Microsoft Research. The Boogie benchmark.
http://research.microsoft.com/en-us/projects/

specsharp/.

[18] L. D. Moura and N. Bjorner. Z3: An efficient SMT
solver. 4963:337, 2008.

[19] M. Pavlova. Java Bytecode verification and its
applications. PhD thesis, PhD thesis, University of
Nice Sophia-Antipolis, 2007.

[20] J. Valdes, R. E. Tarjan, and E. L. Lawler. The
recognition of Series–Parallel digraphs. ACM
symposium on Theory of computing, pages 1–12, 1979.

[21] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, and
F. Catthoor. A practical dynamic single assignment
transformation. ACM Transactions on Design and
Automation of Electronic Systems, 12(4), 2007.

http://groups.google.com/group/freeboogie/web/spup-experimental-data
http://groups.google.com/group/freeboogie/web/spup-experimental-data
http://kind.ucd.ie/products/opensource/FreeBoogie/
http://kind.ucd.ie/products/opensource/FreeBoogie/
http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/en-us/projects/specsharp/

	Introduction
	Background
	Optimal Passive Form
	The Version-Optimal Passive Form
	The Copy-Optimal Passive Form
	Experiments

	Weakest Precondition versus Strongest Postcondition
	Implementation and Verification Condition Size
	Experimental Comparison

	Related Work
	Conclusions and Problems
	References

