
The Design and Algorithms of
a Verification Condition Generator

FreeBoogie

Radu Grigore

The thesis is submitted to University College Dublin for the degree of PhD in
the College of Engineering, Mathematical & Physical Sciences.

March 2010

School of Computer Science and Informatics
Head of School : Prof. Joe Carthy

Supervisor : Assoc. Prof. Joseph Roland Kiniry
Second supervisor : Prof. Simon Dobson

ii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 History . 3

1.3 Related Work . 5

1.4 A Guided Tour . 8

2 The Core Boogie 11

3 Design Overview 19
3.1 An Example Run . 19

3.2 Pipeline . 21

3.3 The Abstract Syntax Tree and its Visitors 23

3.4 Auxiliary Information . 31

3.5 Verification Condition Generation 33

3.6 The Prover Backend . 34

3.7 Other Generated Code . 38

3.8 Related Work . 38

4 Optimal Passive Form 43
4.1 Background . 43

4.2 The Definition of Passive Form . 51

4.3 The Version-Optimal Passive Form 56

4.4 The Copy-Optimal Passive Form 61

4.5 Conclusions . 65

4.6 Related Work . 66

5 Strongest Postcondition versus Weakest Precondition 69
5.1 Hoare Logic for Core Boogie . 69

5.2 Predicate Transformers . 71

5.3 Replacing Assignments by Assumptions 75

5.4 Verification Condition Size . 75

iii

5.5 Experiments . 81
5.6 Conclusions . 81
5.7 Related Work . 82

6 Edit and Verify 85
6.1 Motivation . 85
6.2 Overview . 86
6.3 Simplifying SMT Formulas . 88
6.4 Correspondence between Trees 96
6.5 Example . 102
6.6 Conclusions . 103
6.7 Related Work . 103

7 Semantic Reachability Analysis 107
7.1 Motivation . 107
7.2 Theory . 111
7.3 Algorithm . 114
7.4 Case Study . 122
7.5 Conclusions and Related Work 123

8 Conclusions 127

A Notation 129

iv

Acknowledgments

In October 2005, Joe Kiniry picked me up from Dublin Airport. The same week,
he showed me ESC/Java and asked me to start fixing its bugs. To do so, I had
to learn about Hoare triples, guarded commands, and a few other things: He
taught me by throwing at me the right problems. He also provided a good
environment for research, by building from scratch in UCD a group focused on
applied formal methods. Joe helped me as a friend when I had difficulties in
my personal life.

I tend to spend most of my time learning, rather than doing. However, in the
summer of 2007 the reverse was true. The cause was the epidemic enthusiasm
of Michał Moskal, who visited our group. For the rest of the four years that I
spent in Dublin, Mikoláš Janota was the main target of my technical ramblings,
since we lived and worked together.

Rustan Leino provided much feedback on a draft of this dissertation. He
observed typesetting problems and suggested how to fix them; he alerted me
to subtle errors; he suggested numerous improvements; he made important
high-level observations. Henry McLoughlin, Joe, and Mikoláš also provided
substantial feedback.

Fintan Fairmichael, Joe, Julien Charles, Michał, and Mikoláš are coauthors of
the papers on which this dissertation is based. During my trips to conferences
and to graduate schools I learned much by discussing and by listening to many,
many people. Some of them are Christian Haack, Clément Hurlin, Cormac
Flanagan, Erik Poll, Jan Smans, and Matt Parkinson. I particularly enjoyed
attempting to solve Rustan’s puzzles.

I remember Dublin as the friendliest city I have ever been to. I remember
the great Chinese food prepared by Juan ‘Erica’ Ye. I remember the great
lectures given by Henry. I remember playing pool with Javi Gómez during our
internship with Google. I remember Julien being over-excited by things I would
hardly notice, such as weird music. I remember a few colleagues, like Lorcan
Coyle, Fintan, Rosemary Monahan, and Ross Shannon, with whom I wish I
had communicated more and whom I hope to meet again. I remember many
former UCD undergraduates, such as Eugene Kenny, with whom I also hope to
meet again.

It was a pleasure to spend these years doing nothing but research. However,
I hope in the future I will strike a better balance between family and work. I
hope I will be a better husband to Claudia, a better father to Mircea, and a better
son to Mariana and Corneliu. All of them were very patient and supportive.
This dissertation is for them, and especially for my son Mircea who, I hope, will
read it some day.

v

This page intentionally contains only this sentence.

vi

Summary

This dissertation belongs to the broad field of formal methods, which is, roughly,
about using mathematics to improve the quality of software. Theoreticians
help by teaching future programmers how to understand programs and how to
construct them. Once people use mathematical techniques to do something, it
is usually a matter of time until computers take over. Researchers in applied
formal methods try to produce tools that that help programmers to write high-
quality new code and also to find problems in old code. Spec] is one attempt to
produce such a tool. Looking at its backend, the Boogie tool, I noticed questions
that begged to be answered.

At some point the program is brought into passive form, meaning that
assignments are replaced by equivalent statements. It was clear that sometimes
the passive form was bigger than necessary. Would it be possible to always
compute the best passive form? To define precisely what ‘best’ means one first
needs a precise definition of what constitutes a passive form. A part of the
dissertation gives such a precise definition and explores what follows from it.
Briefly, there are multiple natural meanings for ‘best’, for some of them it is easy
to compute the ‘best’ passive form, for others it is hard.

Later the program is transformed into a logic formula that is valid if and
only if the program is correct. There are two ways of doing this, based on the
weakest precondition and based on strongest postcondition, but it was unclear
what is the trade-off involved in choosing one method over the other.

One use-case for program verifiers is to monitor programmers writing new
code and point out bugs as they are introduced. Batch processing is bound to
be inefficient. Is there a way to reuse the results of a run when the program
text changes as little as adding a statement or tweaking a loop condition? The
answer is related to Craig interpolants.

Another question is why the Boogie tool checks only for partial correctness,
and does not perform other analyzes as well. In particular, checking for semantic
reachability of Boogie statements may reveal a wide range of problems such as
inconsistent specifications, doomed code, bugs in the frontend of Spec], and
high-level dead code. Of course, one can manually insert assert false statements,
but this is cumbersome. Also, the dissertation shows that it is possible to solve
the task much more efficiently than by simply replacing each statement in turn
with assert false.

vii

viii

Chapter 1

Introduction

“The purpose of your paper is not . . . to describe

the WizWoz system. Your reader does not have a

WizWoz. She is primarily interested in re-usable

brain-stuff, not executable artifacts.”

— Simon Peyton-Jones [145]

1.1 Motivation

Ideal programs are correct, efficient, and easy to evolve. Tools can help with all
three aspects: Type-checkers ensure that certain classes of errors do not occur,
profilers identify performance hot-spots, and IDEs (integrated development
environments) refactor programs. Automation allows humans to focus on the
interesting issues. Knuth [109] put it differently: “Science is knowledge which
we understand so well that we can teach it to a computer; and if we don’t
fully understand something, it is an art to deal with.” For example, a bit string
can represent both a text and an integer, we understand well how to check
that a program does not mix the two interpretations, and we leave the task to
type-checkers. If, on the other hand, we want to check that a program computes
the transitive closure of a graph we usually do it by hand.

A program verifier automatically checks whether code agrees with spec-
ifications. Figure 1.1 shows an example. Variables i, j, k, and q range over
nonnegative integers. The code is an implementation of the Roy–Warshall algo-
rithm [158, 176]. The programmer spent energy to specify what the algorithm
does (requires, ensures) and how it works (invariant). In words, path(G, i, j)
means that there is a path i j in the graph G, and pathK(G, i, j, k) means that
there is such a path whose intermediate nodes come only from the set 0 . . k− 1.
The example illustrates what program verifiers ought to be able to do.

1

1 void fw(boolean[][] G) // G is an adjacency matrix
2 requires square(G);
3 requires (forall i; G[i][i]);
4 ensures (forall i, j; G[i][j] == path(old(G), i, j));
5 { final int n = G.length;
6 for (int k = 0; k < n; ++k) invariant (forall i, j; G[i][j] == pathK(old(G), i, j, k));
7 for (int i = 0; i < n; ++i)
8 for (int j = 0; j < n; ++j)
9 G[i][j] = G[i][j] || (G[i][k] && G[k][j]);

10 }
11

12 axiom (forall G, i, j, k; pathK(G, i, j, k) = G[i][j] || (exists q; q<k && G[i][q] && pathK(G, q, j, k)));
13 axiom (forall G, i, j; path(G, i, j) = pathK(G, i, j, G.length));

Figure 1.1: An example of what program verifiers can ideally do

Note that it is trivial to establish the invariant (because pathK reduces to G
when k = 0) and to infer the postcondition from the invariant (because pathK
reduces to path when k = n). Proving that the invariant is preserved is trickier
than it might seem mainly because of the in-place update, but could conceivably
be done automatically. The proof of the invariant is sometimes omitted from
informal explanations of the algorithm, but the information contained by the
definitions of path and pathK is always communicated. The long term goal
illustrated here is: A program verifier should be able to automatically check
a program even when its annotations contain no more than what we would
say to a reasonably good programmer to explain what the code does and how
it works.

From an engineering perspective, program verifiers are similar to compilers.
The input is a program written in a high-level language, and the output is a
set of warnings (or errors) that indicate possible bugs. For a good program
verifier, the lack of warnings should be a better indicator that the program is
correct than any human-made argument. The architecture often consists of a
front-end that translates a high-level language into a much simpler intermediate
language, and a back-end that does the interesting work. The same back-
end may be connected to different front-ends, each supporting some high-level
language. The back-end is itself split into a VC (verification condition) generator
and an SMT (satisfiability modulo theories) solver. A few alternatives to this
architecture are discussed later (Section 1.3).

The VC generator is a trusted component of program verifiers. Therefore
it is important to study it carefully, including its less interesting corners. This
dissertation shows that even such corners come to life when analyzed in detail
from the point of view of correctness and efficiency. The insights gained from
such an analysis sometimes lead to simpler and cleaner implementations and
sometimes lead to more efficient implementations.

2

1.2 History

In 1957, ‘programming’ was not a profession. At least that’s what Dijkstra
was told [64]. “And, believe it or not, but under the heading profession my
marriage act shows the ridiculous entry theoretical physicist !” That is only one
story showing that in those times programmers were second class citizens and
did not have many rights. Their predicament was, however, well-deserved:
They did not care about the correctness of programs, and they did not even
grasp what it means for a program to be correct! A few bright people changed
the situation. In 1961 McCarthy [130] published the first article concerned
with the study of what programs mean. The article is focused on handling
recursive functions without side effects, which corresponds to the style of
programming used nowadays in pure functional languages like Haskell [146].
Six years later, in 1967, Floyd [75] showed how programs with side effects and
arbitrary control flow can be handled formally. He acknowledges that some
ideas were inspired by Alan Perlis. He emphasized the view of programs as
flowgraphs (or, more precisely, flowcharts). His method is usually known under
the name “inductive assertions.” The method was popularized by Knuth [108].
In 1969, Hoare [91] introduced an axiomatic method of assigning meanings to
programs that appealed more to logicians than to algorithmists. Although the
presentation style is very different, Hoare states that “the formal treatment of
program execution presented in this paper is clearly derived from Floyd.” Based
on Hoare’s work, Dijkstra [65] introduced in 1975 yet another way of defining
the meaning of programs based on predicate transformers such as the weakest
precondition transformer. He did so in the context of a language (without
goto) called “guarded commands,” which provided the main inspiration for the
Boogie language.

It is revealing that all the authors mentioned in the previous paragraph
received the Turing Award, although not necessarily for closely related topics:

1966 Alan Perlis: “For his influence in the area of advanced programming
techniques and compiler construction.”

1971 John McCarthy: “For his major contributions to the field of artificial
intelligence.”

1972 Edsger W. Dijkstra: “[For] his approach to programming as a high, intel-
lectual challenge; his eloquent insistence and practical demonstration that
programs should be composed correctly, not just debugged into correct-
ness; and his illuminating perception of problems at the foundations of
program design.”

3

1974 Donald E. Knuth: “For his major contributions to the analysis of algo-
rithms and the design of programming languages.”

1978 Robert W. Floyd: “For having a clear influence on methodologies for the
creation of efficient and reliable software, and for helping to found the
following important subfields of computer science: the theory of parsing,
the semantics of programming languages, automatic program verification,
automatic program synthesis, and analysis of algorithms.”

1980 C. A. R. Hoare: “For his fundamental contributions to the definition and
design of programming languages.”

Most researchers now prefer to define programming languages from an oper-
ational point of view. Such definitions (1) tend to be more intuitive for program-
mers and (2) correspond directly to how interpreters are implemented. Plotkin’s
lecture notes [147] constitute the first coherent and comprehensive account of
this approach. Much later, in 2004, Plotkin put together a historical account [148]
of how his ideas on structural operational semantics crystallized. He points
to alternative ways of handling the goto statement. He cites McCarthy [130]
as inspiring him to simplify existing work, and credits Smullyan [162] for the

up
down rules. He also relates operational semantics to denotational semantics [20].

All these developments are based on even older work. In the nineteenth
century Hilbert advocated a rigorous approach to mathematics: It should be
possible in principle to decompose any mathematical proof into a finite sequence
of formulas p1, p2, . . ., pn such that each formula is either an axiom or is obtained
from previous formulas by the application of a simple transformation rule.
(Such a sequence is a proof of all the formulas it contains.) The set of axioms
is fixed in advance and is called theory. The set of transformation rules is
also fixed in advance and is called calculus . Without looking at the language
used to express formulas, there is not much more that can be said about this
process. If the language is propositional logic (>, ⊥, and variables, connected
by ¬, ∨, and ∧), then we can evaluate a formula to > or ⊥ once a valuation—
assignment of values to variables—is fixed. A model is a valuation that makes
all axioms evaluate to >. A formula is valid when it evaluates to > for all
models. A calculus is sound if it produces only valid formulas starting from
valid axioms; a calculus is complete if it can produce all the valid formulas.
Even if a sound calculus is used, anything can be derived if we start with an
inconsistent theory, one that has no model. These observations generalize for
other languages like fol, hol (higher order logic), and lambda calculus. The
notion of evaluating formulas is ‘operational,’ while the calculus feels more like
the axiomatic approach to programming languages. The intimate connection
between proofs and programs is explored in a tutorial style by Wadler [174].

4

1.3 Related Work

The previous section gave (intentionally) a very narrow view of modern research
on program verification. It is now time to right that wrong, partly. Because the
field is so vast, we still do not look at all important subfields. For example, no
testing tool inspired by theory is mentioned.

The sharpest divide is perhaps between tools mainly informed by practice
and tools mainly informed by theory. The authors of FindBugs [96], PMD [15],
and FxCop [8] started by looking at patterns that appear in bad code and
then built specific checkers for each of those patterns. Hence, those tools are
collections of checkers plus some common functionality that makes it easy to
implement and drive such checkers. Crystal [6], Soot [167], and NQuery [13]
are stand-alone platforms that make it easy to implement specific checkers.
Rutar et al. [160] compare a few static analysis tools for Java, including FindBugs
and PMD, from a practical point of view.

Tools informed by theory lag behind in impact, but promise to offer better
correctness guarantees in the future. These tools can be roughly classified by
the main techniques used by their reasoning core.

Model checking [48] led to successful hardware verifiers like RuleBase [17,
35]. A model checker verifies whether certain (liveness and safety) properties
hold for a certain state graph—the ‘model.’ The properties are written in a
temporal logic, such as LTL or CTL; the model is a Kripke structure and is
represented usually in some implicit form that tries to avoid state explosion.
SPIN [18, 93] and NuSMV [14, 47] are generic model checkers and each has
its input language. Hardware model checkers start by transforming a VHDL
or Verilog description into a state graph, while software model checkers start
by transforming a program written in a language like Java into a state graph.
Software model checkers that are clearly under active development include the
open source Java Pathfinder [12, 171] and CHESS [4, 137] (for Win32 object code
and for CIL). SLAM [22], a commercially successful tool developed by MSR,
uses a combination of techniques, including model checking, to verify several
properties of Windows drivers. Another noteworthy software model checker
is BLAST [2, 38] (for C). Bogor [3, 155] is a framework for developing software
model checkers.

The input of theorem provers [156, 157] is a logic formula. Usually, when
the language is fol, the theorem prover tries to decide automatically if the input
is valid; usually, when the language is hol the theorem prover waits patiently
to be guided through the proof. The former are proof finders, while the later
are proof checkers. The distinction is not clear cut: Sometimes, the steps that
an interactive prover “checks” are as complicated as some of the theorems

5

that are “proved” automatically. Still, in practice the distinction is important:
Automatic theorem provers tend to be fast, while interactive theorem provers
tend to be expressive.

The most widely used hol provers are Coq [5, 37], Isabelle/HOL [9, 10, 140],
and PVS [16, 143]. The gist of such provers is that they (should) rely on a very
small trusted core. One way to use such theorem provers for program verifi-
cation is to do everything in their input language. For example, Leroy [124]
implemented a compiler for a subset of C in Coq’s language, formulated theo-
rems that capture desired properties of a C compiler, and proved them. Since
Coq comes with a converter from Coq scripts to OCaml [152] programs, the
compiler is executable. (The converter fails if non-constructive laws such as
the excluded middle are used.) Another approach is to introduce notation that
makes the Coq/HOL/Isabelle script look ‘very much’ like the program that is
being run [128]. Yet another approach is to use hol as the target language of a
VC generator (see [40, 31, 168]).

The first approach, that of interactively programming and proving in the
same language, is also used with ACL2 [1, 105], whose input language is not
higher-order.

Provers that handle only fol do not usually require programmers to interact
directly with them. SMT solvers [30], like Z3 [59] and CVC3 [29], are designed
for program verification. The modules of an SMT solver—a SAT solver and
decision procedures for various theories—communicate through equalities.
This architecture dates back to Nelson and Oppen [139]. The theories are
axiomatizations of things that occur frequently in programs, like arrays, bit
vectors, and integers. A specialized decision procedure can handle integers
a lot more efficiently than a generic procedure. The extra speed comes at the
cost of increasing considerably the size of the trusted code base. To have the
best of both worlds, speed and reliability, SMT solvers may produce proofs that
can be later checked by a small program [136]. However, this poses the extra
challenge of producing proof pieces from each decision procedure and then
gluing them together. Simplify [61] was for many years the solver of choice
for program verification. It has a similar architecture (being co-developed by
Nelson), but understands a language slightly different than the standardized
SMT language [28].

Throughout this dissertation, the term ‘program verifier’ is used usually in
a very restricted sense. It refers to a tool that

1. uses an SMT solver as its reasoning core,

2. has a pipeline architecture and an intermediate language, and

3. can be used to generate warnings just like a compiler.

6

The pipeline architecture with an intermediate language is typical in translators
and compilers [142].

Many tools fit this narrow definition, including ESC/Java [71], the static ver-
ifier in Spec] [26] (for C]), HAVOC [114] (for C), VCC [50] (for C), Krakatoa [70]
(for Java), the Jessie plugin in Frama-C [7] (for C), and JACK [31] (for Java).
ESC/Java and JACK support JML [115] (the Java modeling language), an anno-
tation language for Java that has wide support, a reference manual, and even
(preliminary and partial) formal semantics [116]. Frama-C supports ACSL [32],
another of the few annotation languages with an adequate reference manual.

The intermediate language, or at least the intermediate representation, used
by these tools is much better specified. ESC/Java uses a variant of Dijkstra’s
guarded commands [65] that has exceptions. Spec], HAVOC, and VCC, which
are developed by Microsoft Research, use the Boogie language [118, 122]. Kraka-
toa and Frama-C, which are developed by INRIA, use the Why language [70].
The Boogie language (and the associated verifier from Microsoft Research) was
used also as a high-level interface to SMT solvers in order to verify algorithms
and to explore encoding strategies for high-level languages [23, 164].

Many tools have more than one reasoning engine. JACK uses Simplify and
Coq. The Why tool uses a wide range of theorem provers: Coq, PVS, Isabelle/
HOL, HOL 4, HOL Light, Mizar; Ergo, Simplify, CVC Lite, haRVey, Zenon, Yices,
CVC3. SLAM uses both a model checker and the SMT solver Z3.

The Boogie tool, FreeBoogie, and the Why tool are fairly big pieces of code
that convert a program written in an intermediate language into a formula
that should be valid if and only if the program is correct. Moore [135] argues
that a better solution is to explicitly write the operational semantics, which
leads to a much smaller VC generator. It is not clear what impact this has on
speed. However, the technique is most intriguing and it would be interesting to
pursue it in the context of Boogie and Why. (Moore uses ACL2.) Other tools,
like KeY [33] (for Java, using dynamic logic [87]), jStar [66] (for Java, using
separation logic [153]), and VeriFast [98] (for C, using separation logic [153]),
avoid the VC generation step because they rely on symbolic execution [106].
This means, very roughly, that instead of turning the program into a proof
obligation into one giant step, they ‘execute’ the program and they keep track
of the current possible states using formulas. At each execution step they may
use the help of a reasoning engine. (Note that at this level of abstraction and
hand-waving there is not much difference between symbolic execution and
abstract interpretation [55].)

With so many tools, it is surprising that they do not have a more serious
impact in practice. On this subject one can only speculate. It is probably true that
a closer collaboration between theoreticians and practitioners would ameliorate

7

the situation. But it is also true that researchers still have much work to do on
known problems. The expressivity of specification languages is a family of such
problems. For example, it is still considered a research challenge to annotate
particularly simple patterns, like the Iterator pattern [85] or the Composite
pattern [164]. Speed is another problem. As any (non-Eclipse) computer user
will tell you, the number of users of a program tends to decrease with its average
response time. Since program verifiers are intended to be used similarly with
compilers, their speed is naturally compared with that of compilers. Right now,
the response times of program verifiers are higher and have a greater variance.

It is, of course, bothersome that in today’s state of affairs it is hard to annotate
the Iterator pattern properly in many verification methodologies. (Otherwise
it would not have been the official challenge of SAVCBS 2006.) But we should
not expect practitioners to annotate such things at all, just as we should not
expect them to state the invariant 0 ≤ i ≤ n on the omnipresent for loop. In
general, usable verification tools should embody knowledge that is common to
people in a specific domain. There is some work on tackling typical exercises in
an introductory programming course [121] and there is also work in encoding
traditional mathematical knowledge in verifiers [42].

A choice that may have seemed unusual is the use of the name ‘Roy–
Warshall,’ instead of the more standard ‘Floyd–Warshall,’ for the algorithm
in Figure 1.1. There are many algorithms with the shape

(1.1) for k do for i, j do aij ← aij ◦ (aik • akj)

and they are sometimes known under the name “the kij algorithm.” Roy [158]
and Warshall [176] noticed independently that ◦ = ∨ and • = ∧ solves the tran-
sitive closure problem. Floyd [74] noticed that ◦ = min and • = + solves the all
pairs shortest paths problem. (He did this five years before assigning meanings
to programs.) Although less clear, other earlier algorithms are instantiations of
the kij schema. Kleene [107] proved that every finite automaton corresponds to
a regular expression. His proof is constructive and is now known as Kleene’s
algorithm. The Gauss–Jordan method for solving systems of linear equations is
another example. Pratt [150] discusses the kij algorithm in general terms.

1.4 A Guided Tour

The content of this dissertation touches on issues related to software engineering,
compilers, programming languages, algorithm analysis, and theorem provers.
It is often abstract and theoretical, but sometimes descends into implementation
details. Therefore, there are plenty of opportunities for a reader to find some-
thing enjoyable. Of course, there are even more opportunities for a reader to

8

The Core Boogie 11
Design Overview 19
Optimal Passive Form 43
Strongest Postcondition versus Weakest Precondition . 69
Edit and Verify 85
Semantic Reachability Analysis 107

Figure 1.2: Dependencies between chapters

find something not enjoyable, especially if the reader has a strong preference for
one sub-field of computer science. Fortunately, the dissertation does not stem
from one big contribution, but rather from many smaller ones that are related
and yet can be understood independently. The dependencies between chapters
appear in Figure 1.2. Chapter 2 is very important, as it is required reading for
all subsequent chapters.

The scope of the dissertation reflects the broad interests of the author. Often,
broad texts say nothing about a lot, and are quite boring. The focus on a very
specific part of a very specific type of static analysis tools and the focus on a
very small subset of the Boogie language are meant to ensure enough depth.

My hope is that the dissertation will bring together at least two people from
different sub-fields of computer science to work together on a common problem
related to program verifiers.

Chapter 2 presents the syntax and the operational semantics of a subset of
the Boogie language, which is used throughout subsequent chapters.

Chapter 3 presents what FreeBoogie does. Its architecture is sketched, in-
cluding the interfaces between major components. The advantages and dis-
advantages of each important design decision are discussed, so that others
who endeavor in similar tasks avail of our experience and avoid repeating our
mistakes.

Chapter 4 presents how FreeBoogie replaces assignments by equivalent
assumptions. The algorithm’s complexity is analyzed in detail and its goals are
clearly defined. A natural variant of the problem is proved to be NP-hard.

Chapter 5 presents how FreeBoogie generates a prover query from a Boo-
gie program, using either a weakest precondition transformer or a strongest
postcondition transformer. In the process, we see how four types of assigning
meanings to Boogie programs relate to each other: operational semantics, Hoare
triples, weakest preconditions, and strongest postconditions. (Chapters 4 and 5
are based on [83].)

Chapter 6 presents how FreeBoogie exploits the incremental nature of writ-
ing code and annotations in order to improve its response times. The generic

9

idea, of exploiting what is known from previous runs of the verifier, is refined
and then proved correct. (This chapter is based on [84].)

Chapter 7 presents what FreeBoogie does to protect developers from making
silly mistakes that render verification useless: Inconsistencies make everything
provable. An algorithm that efficiently searches for inconsistencies is given and
is analyzed. Experimental results show that it is practical. (This chapter is based
on [101].)

Chapter 8 concludes the dissertation. Appendix A summarizes the notation
used throughout the dissertation. The reader is advised to browse that appendix
before continuing with the next chapter.

Software engineers and practitioners are likely to enjoy most Chapter 3.
People with a formal background, like logicians and type theorists, are likely
to enjoy most Chapters 5 and 6. Algorithmists are likely to enjoy most Chap-
ter 4, 6 and 7. Developers of program verification tools are likely to enjoy most
Chapters 6 and 7.

10

Chapter 2

The Core Boogie

“The boogie bass is defined as a left-hand

rhythmic pattern, developed from boogie-woogie

piano styles, that is played on the bass string.”

— Frederick M. Noad [141]

From now on almost all programs are written in the Boogie language, and
almost all are written in a subset—the core Boogie—defined in this section.
What is ‘core’ is relative to the topics discussed in this dissertation.

Figure 2.1 shows an implementation of sequential search. After the counter i
is initialized in line 2 the control goes nondeterministically to both labels b and d.
An execution gets stuck if it hits an assumption that does not hold. Since
the conditions on the lines 3 and 5 are complementary, exactly one of the
two executions will continue. (In general, the if statement of full Boogie may
be desugared into a goto statement that targets two assume statements with
complementary conditions.) The return statement is reached only if i ≥ vl or
v[i] = u.

The high-level constructs of full Boogie (such as if statements, while state-
ments, and call statements) can always be desugared into the core that is formal-
ized here. The concrete grammar of core statements appears in Figure 2.2. The
statement assert p means “when you reach this point, check that p holds.” The

1 procedure indexOf(u : int, v : [int] int, vl : int) returns (i : int) {
2 a: i := 0; goto b, d;
3 b: assume i < vl && v[i] != u;
4 c: i := i + 1; goto b, d;
5 d: assume !(i < vl && v[i] != u); return;
6 }

a
b

c
d

Figure 2.1: Boogie program with one loop and its flowgraph

11

statement→ label? (assignment | assumption | assertion | jump) ;
label→ id :

assignment→ id := expression
assumption→ assume expression

assertion→ assert expression
jump→ (goto id-tuple) | return

id-tuple→ id (, id)∗

Figure 2.2: Syntax of core Boogie statements

type→ primitive-type |map-type
primitive-type→ int | bool

map-type→ [primitive-type] type
expression→ (quantifier id : type :: expression)
expression→ unary-operator expression | expression binary-operator expression
expression→ expression [expression]
expression→ id | literal | (expression)
quantifier→ forall | exists

unary-operator→ ! | -
binary-operator→ + | - |< | == | && | ||

literal→ true | false | 0 | 1 | 2 | . . .

Figure 2.3: Syntax of core Boogie types and expressions

statement assume p means “continue to look only at executions that satisfy p.”

The type system of full Boogie is rich, featuring polymorphic maps, bit
vectors, and user-defined types, among others. Its expression language is simi-
larly rich. Unlike in the case of statements, the VC generator implementation
(henceforth known as FreeBoogie) does not desugar types and expressions into
simpler ones. How they are treated, however, is not novel. For the sake of the
presentation, only a few types and expressions are retained in the core, the ones
in Figure 2.3.

The syntax for the overall structure of core Boogie programs appears in
Figure 2.4. Statements are preceded by variable declarations, in which the
variables representing the input and the output are singled out. The keyword
procedure is retained from full Boogie, where a program may contain more
than one procedure and where there is also a call statement. Procedures are not
included in the core, because there is nothing novel related to procedure calls
in this dissertation. The mandatory return statement at the end of each body
reduces the number of special cases that need to be discussed later. FreeBoogie
inserts such a statement automatically during parsing, so the user does not have
to end all procedures with return.

program→ procedure id (arguments?) returns (results?) body
arguments, results→ id : type (, id : type)∗

body→ variable-declaration∗ statement∗ return ;
variable-declaration→ var id : type ;

Figure 2.4: Structure of a (core) Boogie program

12

∃t, `v:t ∧ `e:t
`v:=e [asgn] `e:bool

`assert e [asrt]

`e:bool ` f :bool
`e && f :bool [bool] `e:int ` f :int

`e + f :int [arith]

`e:int ` f :int
`e < f :bool [comp] ∃t, `e:t ∧ ` f :t

`e == f :bool [eq]

`true:bool [lit-bool] `0:int [lit-int]

Figure 2.5: Typing rules for core Boogie

Typechecking core Boogie is straightforward: Figure 2.5 shows a represen-
tative sample of the typing rules. The judgment ` p means that the program
fragment p is well-typed and the judgment ` p : t means that the program
fragment p is well-typed and has the type t. The customary environment is
omitted because it is fixed—it consists of all the variable typings appearing at
the beginning of the program. The rules that are missing are similar to the ones
given: For example, there is a rule that says that the expression appearing in an
assumption must have the type bool (analogous to rule [asrt]).

Operational Semantics The set of all variables is denoted by Variable. It can
be thought of as the set of all identifiers or as the set of all strings. The set of
all values is denoted by Value and it contains the set of booleans B = {>,⊥}.
Stores assign values to variables.

Store = Variable→ Value(2.1)

σ ∈ Store(2.2)

Expressions assign values to a stores. Boolean expressions, called predicates ,
define sets of stores.

Expression = Store→ Value(2.3)

Predicate = Store→ B(2.4)

p, q, r ∈ Predicate(2.5)

According to the syntax, the program is a list of statements, which means
that we can assign counters 0, 1, 2, . . . to them. To simplify the presentation,
we will assume that all labels are counters (in the proper range). The state of a
Boogie program is either the special error state or a pair 〈σ, c〉 of a store σ and a
counter c of the statement about to be executed. The following rules define a
relation on states, thus giving an operational semantics for the core of the

13

Boogie language.

(2.6)
p σ

〈σ, c : (assume/assert p)〉 〈σ, c + 1〉

(2.7)
¬(p σ)

〈σ, c : (assert p)〉 error

(2.8) 〈σ, c : (v:=e)〉 〈(v← e) σ, c + 1〉

(2.9)
c′ ∈ `

〈σ, c : (goto `)〉 〈σ, c′〉

A rule h
〈σ, c:P〉 s means that the program may evolve from state 〈σ, c〉 to the

state s if the hypothesis h holds and if the counter c corresponds to a statement
that matches the pattern P . For example, rule (2.9) says that 〈σ, c〉may evolve
into 〈σ, c′〉 if the statement at counter c matches the pattern goto ` and c′ ∈ `.
The notation p σ stands for the application of function p to the argument σ.
Space (that is, the function application operator) is left associative, has the
highest precedence, and, as is customary, it is omitted if there is only one
parenthesized argument that is not followed by another function application.
The notation (v← e) used in rule (2.8) stands for a store transformer, defined
as follows.

(v← e) : Store→ Store(2.10)

(v← e) σ w =

{
σ w if v 6= w
e σ if v = w

(2.11)

Definition 1. An execution of a core Boogie program is a sequence s0, s1, . . . , sn

of states such that sk−1 sk for all k ∈ 1. . n and s0 = 〈σ0, 0〉 for some arbitrary
initial store σ0.

Remark 1. All executions are finite. This is an unusual simplification, but one
that can be made as long as we do not investigate whether programs terminate.

The sources of nondeterminism in core Boogie are (1) the initial store σ0 and
(2) the goto rule (2.9) which allows multiple successors.

We say that an execution s0, s1, . . . , sn goes wrong if sn = error. This can
happen only if the last statement that was executed was an assertion. We say
that that assertion was violated .

14

Definition 2. A core Boogie program is correct when none of its executions
goes wrong.

Boogie does not facilitate reasoning about termination. Throughout the
dissertation the term “correct” will usually mean what is traditionally referred
to as “partially correct.” Because we are not interested in termination, we do not
distinguish between executions that reach an assumption that is not satisfied
and executions that reach a return statement: both get stuck.

Let us look at an example. If we turn the labels of the program in Figure 2.1
(on page 11) into counters we obtain

0: i := 0;
1: goto 2, 5;
2: assume i < vl && v[i] != u;
3: i := i + 1;
4: goto 2, 5;
5: assume !(i < vl && v[i] != u);
6: return;

for which one possible execution is

〈σ, 0〉(2.12)

〈(i← 0) σ, 1〉(2.13)

〈(i← 0) σ, 2〉(2.14) (
i < vl∧ v[i] 6= u

) (
(i← 0) σ

)
(∗)(2.15)

〈(i← 0) σ, 3〉(2.16)

〈(i← i + 1) ((i← 0) σ), 4〉(2.17)

〈(i← i + 1) ((i← 0) σ), 5〉(2.18)

¬
(
i < vl∧ v[i] 6= u

) (
(i← i + 1) ((i← 0) σ)

)
(∗)(2.19)

〈(i← i + 1) ((i← 0) σ), 6〉(2.20)

(The store σ is arbitrary but fixed.) The lines marked with (∗) are not states but
rather conditions that are assumed to hold. In order to evaluate those conditions
we need to look inside the predicates. Every nary function f : (Value→)nValue
has a corresponding function f ′ on expressions:

(2.21)
f ′ : (Expression→)nExpression

f ′ e1 . . . en σ = f (e1 σ) . . . (en σ)

In particular, boolean functions have corresponding predicate combinators. By
notation abuse, we write ∧, ∨, . . . between booleans as well as between predi-
cates. Also, the boolean constants > and ⊥ are boolean functions with arity 0,
so we shall abuse them too and write> and⊥ for constant predicates. Similarly,

15

we will lift the other operators. An example evaluation of a predicate follows.(
i < vl∧ v[i] 6= u

) (
(i← 0) σ

)
= (i < vl)

(
(i← 0) σ

)
∧ (v[i] 6= u)

(
(i← 0) σ

)
= i

(
(i← 0) σ

)
< vl

(
(i← 0) σ

)
∧ . . .

A predicate that consists of a variable v is evaluated by reading the variable’s
value from the store; a predicate that consists of a constant c evaluates to that
(lifted) constant. (For example, the predicate 0 is lifted to the integer 0.)

v σ = σ v(2.22)

c σ = c(2.23)

The evaluation continues as follows.

i
(
(i← 0) σ

)
< vl

(
(i← 0) σ

)
(2.24)

= (i← 0) σ i < (i← 0) σ vl(2.25)

= 0 < σ vl(2.26)

And we conclude that for the previous example execution the initial store σ

must satisfy 0 < (σ vl).
A special case of (2.21) is equality. Equality between values is a function

= : Value → Value → B that has a corresponding expression combinator
= : Expression → Expression → Predicate. For example, we write v = e for a
predicate that defines the set of stores in which the variable v and the expres-
sion e evaluate to the same value.

We say that predicate p is valid and we write |p| when it holds for all stores.

(2.27) |p| = (∀σ, p σ)

We will often need to say that two predicates delimit exactly the same set of
stores, so we introduce a shorthand notation for it, which will also be useful
when defining (syntactically) new predicates.

(2.28) (p ≡ q) = |p = q|

Finally, we shall abuse notation and write (v← e) p for predicates p, based
on the fact that every store transformer f : Store→ Store has a corresponding
expression transformer f ′:

f ′ : Expression→ Expression(2.29)

f ′ e σ = e (f σ)(2.30)

This concludes the presentation of the core of Boogie that is used often in
the next chapters.

16

Prior Work The semantics given here for core Boogie correspond to the trace
semantics of Leino [118]. Simple statements are treated essentially as input–
output relations [90, Chapter 6]. Unusually, this chapter does not define ex-
plicitly any way to compose statements. Instead, a program counter and goto
statements allow any control flowgraph, in the style of Floyd [75].

The full Boogie language [122] is more high-level and more user-friendly.

17

18

Chapter 3

Design Overview

“One of the best indications that a program is the

result of the activity of design is the existence of a

document describing that design.”

— Jim Waldo [175]

This chapter is rather dense. A cursory read will show how the later, more
theoretical chapters fit together in the context of a real program; a careful read
will serve as a guide to FreeBoogie’s source code for new developers.

3.1 An Example Run

The best way to understand how FreeBoogie works is to run it on a few examples
and ask it to dump its data structures at intermediate stages. Figure 3.1 shows
a Boogie program suitable for a first run. Notice that the language is not
restricted to the core defined in Chapter 2. To peek at FreeBoogie’s internals use
the command

fb --dump-intermediate-stages=log example.bpl

assuming that you wrote the content of Figure 2.1 in the file example.bpl and
that FreeBoogie is correctly installed on your system. This will create a directory
named log. The output of each processing phase of FreeBoogie appears in a
subdirectory of log.

1 type T;
2 procedure indexOf(x : T, a : [int] T, al : int) returns (i : int) {
3 i := 0;
4 while (i < al && a[i] != x) { i := i + 1; }
5 }

Figure 3.1: A high-level Boogie version of Figure 2.1

19

Figure 3.2: Flowgraph of a desugared version of Figure 2.1

Such transformation phases include desugaring the while statement, desug-
aring the if statement, cutting cycles, eliminating assignments (Chapter 4),
computing the VC (Chapter 5). Let us look briefly at the state of FreeBoo-
gie after while and if statements are desugared. To do so we could look at
the pretty-printed Boogie code but we can also look at the flowgraph that is
dumped by FreeBoogie in the GraphViz [67] format. A command like

dot log/freeboogie.IfDesugarer/*.dot -Tpng > fig3.2.png

produces Figure 3.2. Such drawings of the internal data structures are very
helpful in understanding FreeBoogie and in debugging it. For example, in
Figure 3.2 we see that FreeBoogie introduces labels prefixed by $$ and a string
like if or while, which hints to the origin of the label.

The flowgraph is an example of auxiliary information that FreeBoogie com-
putes after each transformation. The other pieces of auxiliary information are
the symbol table and the types. The symbol table is a one-to-many bidirectional
map between identifier definitions and identifier uses. The types are associated
with expressions (and subexpressions).

To see the query that is sent to the theorem prover you must run a different
command, this time shown in abbreviated form:

fb -lf=example.log -ll=info -lc=prover example.bpl

The log file example.log will contain everything sent to the prover. FreeBoogie
prints

OK: indexOf at example.bpl:2:11

indicating that the program is correct.

20

parse

desugar break
desugar while

desugar if
handle loops
desugar call

desugar havoc
desugar specifications
remove assignments

compute VC
add prover-dependent axioms

simplify VC
query a prover

update
extra

inform
ation

Figure 3.3: FreeBoogie architecture.

3.2 Pipeline

Figure 3.3 shows that FreeBoogie has a pipeline architecture. The light green

color stands for the Boogie AST (abstract syntax tree); the dark blue color
stands for the SMT AST.

Horizontal boxes, except for the first one (parse) and the last one (query a
prover), represent transformations. Depending on the type of input and on the
type of output there are three types of transformations: Boogie to Boogie, Boogie
to SMT, and SMT to SMT. For brevity, we say ‘Boogie transformations’ instead
of ‘Boogie to Boogie transformations’, and ‘SMT transformations’ instead of
‘SMT to SMT transformations’. All these transformations are designed not to
miss bugs, at the cost of possible false positives.

Definition 3. A Boogie transformation is sound when it produces only incorrect
Boogie programs from incorrect Boogie programs. A Boogie to SMT transfor-
mation is sound when it produces only invalid formulas from incorrect Boogie
programs. An SMT transformation is sound when it produces only invalid
formulas from invalid formulas.

Remark 2. This definition is in a way formal, but in a way it is not. It makes use
of the concept of ‘correct Boogie program’ and we only have semantics for core
Boogie programs (Chapter 2). For example, we can say precisely what it means
for the assignment removal transformation to be sound, because both the input
and the output of that transformation are core Boogie programs; however, we
can only informally describe the preceding transformations as sound.

The symmetric notion is that of completeness.

21

Definition 4. A Boogie transformation is complete when it produces only
correct Boogie programs from correct Boogie programs. A Boogie to SMT
transformation is complete when it produces only valid formulas from correct
Boogie programs. An SMT transformation is complete when it produces only
valid formulas from valid formulas.

All transformations in FreeBoogie are sound; all transformations in FreeBoo-
gie are complete, except loop handling.

Full Boogie would not be user friendly without high-level constructs like
while statements and break statements. Many phases in FreeBoogie perform
syntactic desugarings of these constructs. The desugaring is sometimes local,
in the sense that it can be done without keeping track of an environment, and
sometimes it is not. For example, to desugar the break statement we must keep
track of the enclosing while and if statements; but the desugaring of a havoc
statement does not depend on any surrounding code.

The most important transformation in FreeBoogie is the transition from Boo-
gie to SMT. The role of the preceding Boogie transformations is to simplify the
program to a form on which the VC is easily computed; the role of subsequent
SMT transformations is to bring the VC to a form that is easily handled by an
SMT solver.

The order of Boogie transformations depends on constraints such as the
following. The Boogie to SMT transformation (‘compute VC’ in Figure 3.3)
only handles the assert, assume, and goto statements. The Boogie transfor-
mation that removes assignments only handles acyclic flowgraphs. Hence,
the flowgraph must first be transformed into an acyclic one (‘handle loops’ in
Figure 3.3).

The VC uses concepts such as arrays, which may or may not be known to
the prover. In the latter case, axioms that describe the concept must be added to
the VC. Finally, the VC is simplified so that the communication with the prover
is more efficient.

The source code of FreeBoogie, written in Java 6, contains four packages,
which are in one-to-one correspondence with the following sections.

• freeboogie.ast: data structures to represent Boogie programs

• freeboogie.tc: computing auxiliary information from a Boogie AST

• freeboogie.vcgen: the Boogie transformations and the Boogie to SMT trans-
formation

• freeboogie.backend: the SMT transformations, data structures to represent
SMT formulas, communication with SMT solvers

22

Program = Signature! sig, Body! body;

Signature = String! name, [list] VariableDecl args, [list] VariableDecl results;

Body = [list] VariableDecl vars, Block! block;

VariableDecl = String! name, Type! type;

Block = [list] Statement statements;

Type = enum(Ptype: BOOL, INT) ptype,

Statement :> AssertAssumeStmt, AssignmentStmt, GotoStmt;

AssertAssumeStmt = enum(StmtType: ASSERT, ASSUME) type,

[list] Identifier typeArgs, Expr! expr;

AssignmentStmt = Identifier lhs, Expr rhs;

GotoStmt = [list] String successors;

Identifier = String! id,

Figure 3.4: The abstract grammar of core Boogie

3.3 The Abstract Syntax Tree and its Visitors

The Boogie AST data structures are described using a compact notation. A
subset, corresponding to core Boogie, appears in Figure 3.4. AstGen (a helper
tool) reads this description and a code template to produce Java classes. The
approach has advantages and disadvantages. The generated classes are very
similar to each other because they come from the same template. This means
that it is easy to learn their interface. It also means that it is easier to change
all the classes in a consistent way by changing the template. The compact
description in Figure 3.4 is easier to read than the corresponding 12 Java classes.
The overall structure of the AST is easier to grasp. It is also easier to modify,
since it takes far less time to change one or two lines than one or two Java
classes. However, the programmer needs to learn a new language (the one used
in Figure 3.4) and IDEs are usually confused by code generators.

Another consequence of this approach, which might be seen as a disadvan-
tage, is that there is no way to add specific code to specific classes: We are forced
to implement operations over the AST using the visitor pattern [77]. In passing,
note that if the target language would have been C], then one could add specific
code to specific classes by using partial classes.

3.3.1 The Abstract Grammar Language

AstGen reads a description of an abstract grammar and a template. Therefore it
understands two languages—the AstGen abstract grammar language and the
AstGen template language. This section describes the AstGen abstract grammar
language, which was already used in Figure 3.4. The syntax of the AstGen
abstract grammar language appears in Figure 3.5. (Note that a formal language
is used to describe the concrete syntax of a language that is used to describe the
abstract grammar of a language whose concrete syntax was studied in Chapter 2
using the same formal language that we use here in Figure 3.5: There is some

23

grammar→ rule∗

rule→ composition | inheritance | specification
composition→ class = members? ;

inheritance→ class :> classes? ;
specification→ class : text ¶

class→ id
members→ member (, members)∗

classes→ class (, classes)∗

member→ tags type !? name
tags→ tag (, tags)∗

type→ id | enum (id : id (, id)∗)
name→ id

tag→ [id]

Figure 3.5: The syntax of the abstract grammar language

opportunity for confusion.)
The abstract grammar is described by a list of rules. Each rule starts with

the name of the class to which it pertains. A composition rule continues with
an equal sign (=) and a list of members. An inheritance rule continues with a
supertype sign (:>) and a list of subclasses. A specification rule continues with
a colon (:) and some arbitrary text. The end of composition and inheritance
rules is marked by a semicolon (;) and the end of a specification rule is marked
by the end of the line (depicted as ¶ in Figure 3.5). That is (almost) all.

To illustrate why this notation is beneficial, suppose that initially the data
structures for the Boogie AST contained only public fields.

1 public class Program {
2 public Signature sig;
3 public Body body;
4 }

This Java code is obviously not much longer and indeed very similar to the
first line in Figure 3.4. But it has a number or problems. First, we probably
want the Program class to be final. Without using AstGen we must go and add
the keyword final in each class: Program, Signature, Body, VariableDecl, . . . With
AstGen, we only need to add that keyword in the template. Another problem
is that there is no constructor. Again, adding constructors is a repetitive job
if we must do it in each and every class. Finally, FreeBoogie’s data structures
are immutable. More precisely, the members are private and final, they are set
by the constructor, and accessor methods only allow them to be read. Again,
making these changes in all classes is a repetitive job. In summary, the main
advantage of using AstGen is that we separate the concern of defining the shape
of the abstract grammar from lower-level concerns such as whether we allow
subclassing or not, whether we allow mutations or not.

Specification rules, which refer to classes, and tags, which refer to members
(see Figure 3.5), allow for a little non-uniformity in the generated code. The bang
sign (!) is a shorthand for the tag [nonnull]. As we will see, the code template

24

may contain parts that are used or not by AstGen depending on whether a tag is
present. In particular, FreeBoogie’s code template says “assert x 6= null” when
member x has the tag [nonnull]. The only other tag used in Figure 3.4 is [list],
which will be discussed briefly in Section 3.3.4.

A specification rule associates some arbitrary text to a class. Templates then
instruct AstGen where in the output to insert the arbitrary text. For example, in
FreeBoogie the arbitrary text is always a side-effect free Java boolean expression.
FreeBoogie’s code template inserts these boolean expressions in Java assert
statements within constructors. In general, the intended use of specification
rules is to give object or class invariants. However, there is nothing in AstGen
to enforce this use. Hence, specification rules could be abused to insert, say,
custom comments in the header of generated classes.

3.3.2 AstGen Templates

Figure 3.6 illustrates the main characteristics of an AstGen template and, at
the same time, gives some details on how the Boogie AST data structures are
implemented. The language for templates is influenced by TEX [111]. Macros
start with a backslash (\) and may take arguments. Some macros are primitive
and some are defined using \def. Before cataloging primitive macros, let us
analyze the high-level structure of the template in Figure 3.6.

The first four lines define macros that are used later. AstGen then sees the
(primitive) \classes macro and processes its argument once for each class in
the abstract grammar. Terminal classes, which are those without subclasses,
have private fields, a private constructor, a static factory method mk, a method
checkInvariant, accessors for getting the values of the fields, and a method eval,
which is typically called accept in most presentations of the visitor pattern.
Non-terminal classes only have abstract accessors for getting the values of the
fields.

The primitive macros can be grouped in four categories: (1) output selection,
(2) data, (3) test, and (4) iteration.

The macro \file{ f} globally directs the output from now on to the file f.

The data macros do not take any parameter. They expand to the name of
the current class (\className), the name of the base class of the current class
(\baseName), the type of the current member (\memberType), the name of the cur-
rent member (\memberName), the name of the current enumeration (\enumName),
the current enumeration value (\valueName), the current invariant (\inv). The
‘current’ class/member/enumeration/value/invariant is determined by the
enclosing iteration macros. All data macros except \inv are made of two words
and they come in four case conventions (camelCase, PascalCase, lower case,

25

\def{smt}{\if_primitive{\Membertype}{\MemberType}}

\def{mt}{\if_tagged{list}{ImmutableList<}{}\smt\if_tagged{list}{>}{}}

\def{mtn}{\mt \memberName}

\def{mtn_list}{\members[,]{\mtn}}

\classes{\file{\ClassName.java}

/* ... package specification and some imports ... */

public \if_terminal{final}{abstract} class \ClassName extends \BaseName {

\if_terminal{

\members{private final \mtn;}

private \ClassName(\mtn_list) {

\members{this.\memberName = \memberName;}

checkInvariant();

}

public static \ClassName mk(\mtn_list) {

return new \ClassName(\members[,]{\memberName});

}

public void checkInvariant() {

assert location != null;

\members{\if_tagged{nonnull|list}{assert \memberName != null;}{}}

\invariants{assert \inv;}

}

\members{public \mtn() { return \memberName; }}

@Override public <R> R eval(Evaluator<R> evaluator) {

return evaluator.eval(this);

}

}{

\selfmembers{public abstract \mtn();}

}} }

Figure 3.6: Excerpt from the AstGen template for Boogie AST classes

26

and UPPER CASE): The output is formatted accordingly.

The test macros have the shape \ifcondition{yes}{no}. If the condition
holds then the yes part is processed and the no part is ignored; if the condition
does not hold then the no part is processed and the yes part is ignored. The
braces in the yes and no parts must be balanced. The condition primitive

holds when the type of the current member does not appear on the left hand
side of a composition rule. (In particular, it holds for members whose type
is an enumeration.) The condition enum holds when the type of the current
member is an enumeration. The condition terminal holds when the current
class has no subclass. The condition tagged{tag expression} is more interesting.
A tag expression may contain tag names, logical-and (&), logical-or (|), and
parentheses. A tag name evaluates to > when the current member has that tag.

The iteration macros have the shape \macro[separator]{argument}. The ar-
gument is processed repeatedly and the optional separator is copied to the
output between two passes over the argument. The macro \classes processes
its argument for each class (and hence each pass has a ‘current class’). The
macro \members processes its argument for each member of the current class,
including inherited members (and hence each pass has a ‘current member’).
The macro \selfmembers processes its argument for each member of the cur-
rent class, excluding inherited members (and hence each pass has a ‘current
member’). The macro \invariants processes its argument for each invariant of
the current class, which appear in specification rules (and hence each pass has
a ‘current invariant’). The macro \enums processes its argument for each enu-
meration used as a type in the current class (and hence each pass has a ‘current
enumeration’). The macro \values processes its argument for each value of the
current enumeration (and hence each pass has a ‘current enumeration value’).

It is an error for a macro x to appear in a context where there should be a
current y, but there is none. For example, it is an error for the macro \enumName

to appear in a context where there is no current enumeration. In other words,
the macro \enumName cannot appear outside of the argument of \enums, which
is the only macro that sets a current enumeration.

3.3.3 Visitors

The visitor pattern is widely used to implement compilers. It can be seen as a
workaround to a limitation of most object-oriented languages. A reference u has
the static type Cu when the declaration of variable u is Cu u; a reference u has
the dynamic type C′u when it points to an object whose type is C′u; an object has
the type C′u when it was created by the statement new C′u(· · ·). The method call
u.m(v) is resolved based on the dynamic type C′u and on the static type Cv. In

27

other words, the code that will be executed is in a method named m that takes
an argument of type Cv (or a supertype of Cv) and is defined in the class C′u (or
a supertype of C′u). There is no way to do the dispatch based on the dynamic
type of two (or more) references.

However, it is possible to do the dispatch based on the dynamic types
of n references one by one, at the cost of writing extra code. Say the refer-
ences u1, u2, . . . , un have static types C1, C2, . . . , Cn and dynamic types C′1, C′2,
. . . , C′n. The initial call u1.m1(u2,. . .,un) will execute a method m1(C2, . . . , Cn)
from the class C′1, because all the (proper) subclasses of C1 implement such a
method. The body of all these methods will be identical: It will contain the call
u2.m2(this, u3, . . . , un). Each subclass of C2, including C′2, is expected to have a
set of methods m2(C1, C3, C4, . . . , Cn) for all possible (proper) subclasses C1 of C1.
The static type of this in the call u2.m2(this, u3, . . . , un) was C′1, so the method
with C1 = C′1 will be chosen out of the whole set. In general, all subclasses
of Ck must implement a set of methods mk.(C1, . . . , Ck−1, Ck+1, . . . , Cn), for all
subclasses C1 of C1, all subclasses C2 of C2, and so on. The methods mn will do
the actual work. Let us estimate the number of methods that only forward calls
and were referred to in the beginning of the paragraph as ‘extra code’. If the
number of possible types for u1, u2, . . . , un is, respectively, w1, w2, . . . , wn then
the number of methods mk is ∏i≤k wi. There are therefore ∑k<n ∏i≤k wi meth-
ods whose only purpose is forwarding and ∏i≤n wi methods that do something
interesting.

As it is traditionally presented, the visitor pattern is the case n = 2 with C1

being the root of the AST class hierarchy and C2 being the root of the visitors
class hierarchy. There is exactly one forwarding method per AST class (and their
total number is w1 with the previous notation). In this guise, the visitor pattern
can be seen as a way of grouping together the code that achieves one conceptual
operation. For example, pretty printing an AST can be done by implementing
a method prettyPrint in each AST class, but can also be done by putting all the
pretty printing code into one visitor called PrettyPrinter. (Note that AstGen
makes it hard to use the former approach, with a specific prettyPrint method in
each class.)

FreeBoogie uses the traditional visitor pattern and the root of the visitors’
class hierarchy is the class Evaluator<R>. The root of the Boogie AST class
hierarchy is the class Ast. A subclass of Evaluator<R> is like a function of type
Ast → R, in the sense that it associates a value of type R (possibly null) to
an AST node. For example, the type checker is a subclass of Evaluator<Type>.
The base class Evaluator declares one eval(A) method for each AST class A .
These are the methods called m2 in the previous discussion of the general visitor
pattern. These methods are not only declared, but they are also implemented,

28

input output

Figure 3.7: Path copying

so that subclasses explicitly handle only the relevant types of AST nodes. For
all the other AST node types, the default behavior implemented in Evaluator is
to recursively evaluate all children and to cache the results. Because the eval
methods of Evaluator are so similar, they are generated from an AstGen template.

An important type of evaluator is a transformer: The class Transformer ex-
tends Evaluator<Ast>. The main functionality implemented in Transformer,
path copying, is illustrated in Figure 3.7. Empty nodes (and) represent AST
nodes that exist on the heap before a transformer T acts; filled nodes (and)
represent AST nodes created by the transformer T. Because the transformer T is
interested only in rectangle nodes, it overrides only the eval method that takes
rectangles as parameters. That overriden method is responsible for creating the
filled rectangle (). All the other filled nodes () are created by Transformer, and
need not be of any concern to the particular transformer T.

The input and the output of a transformer usually share a large number of
nodes. Since Evaluator caches the information that various evaluators associate
with AST nodes, there is no need to repeat the computation of that auxiliary
information for the shared parts. For example, most of the type information is
already in the cache of the type checker.

Sometimes a transformer wants to ‘see’ AST nodes of type A even if it
computes no value for them. A typical example is a pretty printer. In such
cases a transformer may override eval(A) and return null. A nicer solution is
to override see(A), whose return type is void. If both eval(A) and see(A) are
overriden, then the former will be called by the traversal code in Transformer.

3.3.4 Immutability

In Java programming, it is unusual to constrain data structures to be immutable.
Since the resulting code may look awkward to many programmers, there better
be some good reasons for this design decision. In fact, awkward code, such

29

1 public class Renamer extends Transformer {
2 @Override public Identifier eval(Identifier identifier) {
3 if (!identifier.id().equals("u")) return identifier;
4 else return Identifier.mk("v");
5 }
6 }

Figure 3.8: Changing all occurrences of variable u into variable v

as copying all but one of the fields in a new object instead of doing a simple
assignment, is only one of the apparent problems.

Immutability implies path copying, which is a potential performance prob-
lem. Consider the task of changing all occurrences of the variable u into vari-
able v, which is achieved by the transformer in Figure 3.8. Suppose an AST with
height h and n nodes contains exactly one occurrence of variable u. If the class
Identifier would be mutable, one assignment would be enough to achieve the
substitution; since the class Identifier is immutable, about h new nodes must be
created and initialized. However, if there are two occurrences of variable u, they
share some ancestors, meaning that less than about 2h new AST nodes must be
created and initialized. Even more, if we take into account the tree traversal,
then both implementations, with a mutable AST and with an immutable AST,
take Θ(n) time. In other words, there is no asymptotic slowdown.

A Boogie block contains a list of statements (see Figure 3.4). Such lists should
be immutable, but there are no immutable lists in the Java API (application
programming interface), only immutable views of lists. Immutable collections
can be implemented such that immutability is enforced statically by the com-
piler or such that immutability is enforced by runtime checks. Unfortunately,
the former is incompatible with implementing Java API interfaces [11]. For ex-
ample, in order to use the iteration statement for (T x : xs), one must implement
the interface Iterable that contains the method remove. Obviously, calls to the
remove method are not prevented statically by the compiler. FreeBoogie uses
the ImmutableList class from the Guava [81] library, which follows the approach
with runtime checks. (Figure 3.6 shows that the ImmutableList is used whenever
the [list] tag appears in the abstract grammar.)

However, the advantages of immutability outweigh its disadvantages.

First, immutability enables Evaluator to cache the results of previous compu-
tations, because only immutable data structures can be used as keys in maps.
A particular evaluator, such as the type-checker, need not mention anywhere
in its implementation that caching is used. Yet, if the type-checker is invoked
twice on the same AST fragment, then the second call will return immediately.
This leads to cleaner code also because AST transformers need not bother with

30

updating the auxiliary information—recomputing it is cheap. These advantages
are discussed further in Chapter 6.

Second, immutability makes the code easier to understand, because it frees
the programmer from thinking about aliasing of AST nodes. In Java, any
mutation of u.f must be done only after thinking how it will affect code that uses
possible aliases of u. Because the AST is a central data structure in FreeBoogie,
there is a lot of potential aliasing that must be considered whenever a mutation
is done. It is much simpler to forbid mutations altogether.

Still, there are situations when the programmer must think about aliasing of
AST data structures. It is natural to think of an AST reference as being a piece of
a Boogie program, even if, strictly speaking, it only represents a piece of a Boogie
program. To maintain this useful illusion the programmer must ensure that no
sharing occurs within one version of the AST. More precisely, there should never
be more than one reference-path between two AST nodes. (There is a reference-
edge u→ v from the object referred by u to the object referred by v when u.f==v
for some field f .) For example, if the expression x + y appears multiple times
in a Boogie program, then the corresponding AST also appears multiple times,
instead of being shared. In practice, this means that the programmer must
occasionally clone pieces of the AST when implementing transformers. (The
clone method is implemented in the code template for AST classes.)

3.4 Auxiliary Information

The package freeboogie.tc derives extra information from a Boogie AST—types, a
symbol table, and a flowgraph.

The AST constructed by the parser is type-checked in order to catch simple
mistakes in the input. As a safeguard against bugs in FreeBoogie, the AST is
type-checked after each transformation. A side-effect of type-checking is that
the type of each expression is known.

The symbol table helps in navigating the AST. It consists of one-to-many
bidirectional maps that link identifier declarations to places where the identifiers
are used. The only such map that is relevant to core Boogie is the one that links
variable declarations, including those in arguments, to uses of variables. The
other maps, relevant to full Boogie, link procedure declarations to procedure
calls, type declarations to uses of user defined types, function declarations to
uses of (uninterpreted) functions, and type variables to uses of type variables.
(Type variables are similar to generics in Java.) All these maps are in the
class SymbolTable.

Another bidirectional map is built by ImplementationChecker: In full Boogie a
procedure may have zero, one, or multiple implementations. (In core Boogie,

31

the whole program is one implementation.)

Finally, it is sometimes convenient to view one implementation as a flow-
graph whose nodes are statements. Such a flowgraph is built by FlowGraphMaker.
Formally, a flowgraph is defined as follows.

Definition 5. A flowgraph is a directed graph with a distinguished initial node
from which all nodes are reachable.

It seems natural that a flowgraph has an initial node, because there is usually
one entry point to a program. It seems less natural that all nodes must be
reachable, which means that there is no obviously dead code. The reason for
this standard restriction is rather technical: It simplifies the study of flowgraph
properties. However, it does complicate slightly the definition of what it means
for a flowgraph to correspond to a core Boogie program. A few terminology
conventions will help. In Chapter 2 we noticed that we can attach counters to
statements because they are in a list. For concreteness, let us use the counters
1, 2 . . . , n, in this order, when the list of statements has length n. Each counter x
in the range 0. . n has an associated statement, named statement x. Statement 0
is the sentinel statement assume true, which is prepended for convenience.
Label x is the label that precedes statement x, if there is one.

Remark 3. The sentinel statement 0 is not introduced by the FreeBoogie imple-
mentation. It is merely a device that will simplify the subsequent presentation,
especially some proofs.

The flowgraph of a Boogie program is constructed, conceptually, in two
phases.

Definition 6. The pseudo-flowgraph of a core Boogie program with n state-
ments has as nodes statement 1 up to statement n and the sentinel statement 0.
It has an edge 0 → 1 (from statement 0 to statement 1) and has edges x → y
when (a) statement x is goto label y, or (b) statement x is not goto and label y is
the successor of label x.

Remark 4. Compare with (2.6)–(2.9). This definition roughly says that there is
an edge where the operational semantics rules would allow a transition if we
ignore the upper parts of the rules.

Definition 7. The flowgraph of a core Boogie program is a graph that has node 0
as its initial node. Its nodes V are those nodes of the pseudo-flowgraph that are
reachable from node 0 and that are not goto statements. It has an edge m→ n
when there is a path m n in the pseudo-flowgraph that is disjoint from V,
except at endpoints.

32

1 procedure dead(x : int) returns () {
2 L1: assume x > 0;
3 L2: goto L4, L6;
4 L3: assume true;
5 L4: assume x < 0;
6 L5: return;
7 L6: assume true;
8 L7: return;
9 }

0
1

3

4
5

6
7

2

0
1

4
5

6
7

Figure 3.9: Flowgraph of a core Boogie program

Example 1. Figure 3.9 shows a core Boogie program, its pseudo-flowgraph, and
its flowgraph. (Label k is Lk.) Chapter 7 discusses semantically unreachable
nodes of the flowgraph, such as node 4 in this example.

Proposition 1. The only nodes that have no outgoing edges in a flowgraph of a
core Boogie program are those that correspond to return statements.

All auxiliary information is available through TcInterface, which is an imple-
mentation of the Facade pattern.

3.5 Verification Condition Generation

The package freeboogie.vcgen consists of Boogie transformers and Boogie to SMT
transformers. The facade of this package is the class VcGenerator.

Most Boogie transformers are responsible for small AST modifications such
as desugaring an if statement into assume and goto statements. For speed, it
would be better to cluster many such simple transformers into one, but the code
is easier to maintain if they are kept separate. A few helper classes are used
by multiple Boogie transformers: CommandDesugarer is used as a base class by
transformers that change statements into lists of statements; ReadWriteSetFinder
is an evaluator that associates with each statement two sets—the set of variables
that are read and the set of variables that are written.

Boogie transformations do not update the auxiliary information while they
are building new AST nodes. Instead, at the very end, they recompute all
auxiliary information, and caches ensure that no computation is repeated. This
way, bugs that produce untypable Boogie programs get caught at run-time.
(Type information is auxiliary information, so type-checking is repeated.)

The Boogie to SMT transformation is done by the class WeakestPrecondition
or by the class StrongestPostcondition, depending on the command line options.
The theory behind these two classes is presented in Chapter 5.

33

3.6 The Prover Backend

The package freeboogie.backend contains (1) SMT data structures and (2) code to
communicate with provers. The design is inspired by the sorted multi-prover
backend in ESC/Java.

3.6.1 Data Structures and Sort-Checking

The main data structure is a rooted ordered tree whose nodes are labeled by
strings. Each node has a sort , and there are sort-checking rules, which say
what combinations of sorts and labels are valid. In effect, sorts are types—
the only reason a different name is used is to distinguish SMT sorts from
Boogie types. In ESC/Java it is impossible to construct a tree that has sort
errors: Programs that try to construct invalid terms fail Java type-checking.
Such a strong static guarantee is appealing, but increases the backend size
significantly. For example, instead of a single factory method with the signature
SmtTree mk(String label, ImmutableList<SmtTree> children) there is a plethora of
methods with various argument and return types, such as the method with
the signature SmtFormula mkEq(SmtTerm left, SmtTerm right), where both classes
SmtFormula and SmtTerm are subclasses of SmtTree. Because of the size, the
backend is hard to adapt to changes.

FreeBoogie opts for a small backend, so that it easy to understand and
maintain. If an ill-sorted term is built, then most SMT solvers complain and the
problem is found. To help in finding the source of the problem, the backend has
built-in dynamic checks that should point to the offending code, before the SMT
term is shipped to the solver.

Remark 5. This is an instance of choosing dynamic checks over static checks,
because the latter involve too much work. The code is still organized in a way
that should allow static verification. It is the encoding in Java types that was
judged too complicated for its benefits.

Before calling mk(label, children) the label must have been defined. For exam-
ple, after the call def("eq", new Sort[]{Sort.TERM, Sort.TERM}, Sort.FORMULA)
it is possible to call mk("eq", children). This second call will check (using Java
assertions) that there are two children and both are terms, and will mark the
constructed SMT tree as being a formula. All defined labels are grouped in
stack frames, such that the call popDef() discards all definitions done after the
corresponding call pushDef(). Such grouping is useful because some labels refer
to constructs built into SMT solvers and other labels refer to uninterpreted
functions that are defined by the Boogie program. When FreeBoogie moves
from one input file to another it forgets about labels corresponding to functions

34

while not forgetting about labels corresponding to solver built-ins by using the
stack mechanism.

The methods def, mk, pushDef, and popDef are all defined in the class Tree-
Builder. For convenience, the functions def and mk are overloaded.

Let us first look at the method mk. It comes in three varieties:

mk("and", children)(3.1)

mk("eq",t1,t2)(3.2)

mk("literal_int", new FbInteger(3))(3.3)

The first form takes a list of children as the second argument. When the number
of children is fixed, as is the case for the label eq, it is convenient to hide the
building of the list behind a helper overload. The second form can be used when
the number of children is one, two, or three. The third form is special. Strictly
speaking, the constants 1, 2, 3, . . . are distinct functions that take no argument.
This suggests that they should each be defined separately, which is clearly a
very bad idea from the point of view of performance. So, instead of defining
labels 1, 2, 3, . . . , we define the meta-label literal int. A meta-label has an
associated Java type (in this case FbInteger) and it is equivalent to multiple labels,
one for each value of the associated Java type. In other words, the meta-label
literal int and the value new FbInteger(3) determine the label, and there is
no child.

Now let us look at the method def. It comes in three varieties:

def("and", Sort.FORMULA, Sort.FORMULA)(3.4)

def("eq", new Sort[]{Sort.TERM, Sort.TERM}, Sort.FORMULA)(3.5)

def("literal_int", FbInteger.class, Sort.INT)(3.6)

The order of the arguments is: label, sort of arguments, sort of result. The
example for the first form says that tree nodes labeled with and may have
any number of children, all of which must be formulas, and the tree itself is a
formula. The example for the second form says that tree nodes labeled eq have
two children, the first one is a term, the second one is a term, and the tree itself is
a formula. The example for the third form says that the meta-label literal int

together with a value of type FbInteger constitutes a label, and trees labeled in
this way are integers.

(As a side note, FbInteger is used because Boogie allows arbitrarily large
integers and has bit vector operations. No class in the standard Java library
supports both.)

The sorts include FORMULA and TERM :> INT, BOOL. In some places,
such as the first argument of a quantifier, only variables are allowed. Those

35

require the a sort of the form VARx, which is a subsort of some sort x. Other
sorts are easy to add.

Any SMT trees s and t have the property that s.equals(t) implies s==t. This is
implemented by maintaining a global set of all SMT trees that were created, a
technique sometimes known by the name hash-consing [69].

3.6.2 The Translation of Boogie Expressions

The methods mk provide one way of building trees; the method of provides
another way of building trees. For example, the class StrongestPostcondition uses
the methods mk to connect formulas (using the labels and, implies) and uses
the method of to obtain the formulas corresponding to individual assertions
and assumptions.

The method of converts from Boogie expressions to SMT formulas. The
actual work is done in two classes—TermOfExpr and FormulaOfExpr. The transla-
tion is almost one-to-one. Each Boogie operator has a corresponding interpreted
symbol in the SMT language; each function declared in a (full) Boogie program
behaves similarly to an uninterpreted function symbol in the SMT language.
There is, however, an important deviation from the one-to-one correspondence.
As we have seen, the SMT language distinguishes between terms and formulas.
Roughly speaking these correspond, respectively, to non-boolean Boogie ex-
pression and to boolean Boogie expressions. For example, in the SMT language
the operands of logical-and must be formulas and in Boogie the operands of
logical-and must be booleans. On the other hand, an SMT uninterpreted symbol
is always a term, while in Boogie a function may return a boolean. Also, in SMT
the arguments of an uninterpreted symbol must be terms, while in Boogie a func-
tion might take booleans as arguments. Because of these reasons, a one-to-one
translation may produce ill-formed SMT trees, which fail sort-checking.

In SMT the constants true and false are a formulas. If we introduce two
corresponding uninterpreted terms, trueTerm and falseTerm, we can then try to
fix the ill-formed SMT tree using the following two rules.

1. If a term τ appears where a formula is expected then we replace the term
by (= τ trueTerm). This compares for equality τ and trueTerm.

2. If a formula ϕ appears where a term is expected then we replace the for-
mula by (ite ϕ trueTerm falseTerm). This expression evaluates to trueTerm
for all models in which ϕ evaluates to >; it evaluates to falseTerm for all
models in which ϕ evaluates to ⊥.

This, however, is not exactly what FreeBoogie does. Simplify is an old but
still competitive prover whose language is similar to the SMT language. One

36

difference is that in Simplify a term never contains a formula. In particular,
there is no ite, so the rule 2 from above cannot be used.

To clarify these ideas, let us turn to an example.

1 function f(x : bool) returns (bool);
2 axiom (forall x : bool :: x == f(x));
3 procedure p() returns () { assert f(true) != f(false); }

The assertion should hold.
The following is what FreeBoogie sends to Simplify.

1 (BG PUSH (NEQ trueTerm falseTerm))
2 (BG PUSH (FORALL (xTerm) (EQ xTerm (f xTerm))))
3 (NOT (IFF (EQ trueTerm (f trueTerm) (EQ trueTerm (f falseTerm)))))

In Simplify’s language, interpreted symbols are written in CAPITAL letters
and their names are usually self-explanatory. The command BG PUSH com-
municates a hypothesis to the prover. Line 3 is a query. The Boogie constants
true and false that appear as arguments of the function f were translated into
terms directly, without an intermediate application of rule 2. The compari-
son between booleans • != •, which appears in the assertion, was translated to
(NOT (IFF • •)). Because IFF expects formulas as arguments and because (f . . .)
is a term, rule 1 was applied, which is why EQ appears in the query.

Assuming hypothesis 2, the query is equivalent with hypothesis 1.

(NOT (IFF (EQ trueTerm (f trueTerm) (EQ trueTerm (f falseTerm)))))(3.7)

= (NOT (IFF TRUE (EQ trueTerm (f falseTerm)))))(3.8)

= (NEQ trueTerm (f falseTerm))(3.9)

= (NEQ trueTerm falseTerm)(3.10)

Equation (3.8) follows by setting xTerm := trueTerm in hypothesis 2; equa-
tion (3.10), which is the same as hypothesis 1, follows by setting xTerm :=
falseTerm in hypothesis 2. Without the two hypothesis, the query is not valid.
For example, it could be that trueTerm = falseTerm. In general, some extra hy-
potheses are required. If not enough hypotheses are introduced, then FreeBoogie
is incomplete, but should still be sound. Whenever TermOfExpr or FormulaOf-
Expr produce an SMT tree, they may attach to it extra hypotheses. These are SMT
trees themselves, and may have further hypotheses attached. All hypotheses
are collected and sent to the prover before the query.

3.6.3 Talking to the Prover

The class Prover defines the interface that is used by the package freeboogie.vcgen
to talk to the prover. It is a thin interface, consisting of the methods assume,
retract, push, pop, and isValid.

37

The real prover does not have to have the notion of an assumption (also
known as hypothesis), but a class that extends Prover should take advantage
of all facilities of a real prover. For example, if Simplify is used as a prover,
then a sequence of calls assume(h), isValid(q1), isValid(q2) may result in one of
the following two strings being sent to the prover:

(IMPLIES h q1) (IMPLIES h q2)(3.11)

(BG PUSH h) q1 q2(3.12)

Both are OK, but the second is better, if only because h is communicated once.

Similarly, a class that extends Prover may choose to treat certain SMT tree
labels specially to take advantage of other facilities of the real prover.

3.7 Other Generated Code

The Boogie parser resides in the package freeboogie.parser and is generated
by ANTLR (another tool for language recognition); the command line parser
resides in the package freeboogie.cli and is generated by CLOPS (command
line options).

3.8 Related Work

The main goal of the previous sections is to anchor the subsequent theoretical
chapters in a concrete program, FreeBoogie. A secondary goal is to serve as a
guide to the code and to make explicit the early design choices. This section is
for the reader who wants to understand the design in detail, but feels that the
previous sections are too shallow.

3.8.1 Related Tools

FreeBoogie is a Java clone of the Boogie tool [24] from Microsoft Research. The
internals differ but the input and the output interfaces are the same. The input
is a program written in the Boogie language [118, 122]; the output is a formula
written in the SMT language, or in a similar language.

The Why language [70] is another intermediate verification language. Its
syntax is similar to that of OCaml. The accompanying tool targets SMT solvers,
but also proof assistants such as Coq and Isabelle.

The Boogie tool is part of the Spec] program verifier [26], which verifies
programs written in a superset of C]; the Why tool is part of Frama-C [7], which
verifies C programs.

38

3.8.2 Design, Pipeline, and Correctness

Because the input and the output are programs written in well-defined lan-
guages, FreeBoogie is a compiler. The standard text on compiler design is the
Dragon Book [19]. The pipeline architecture is common to most compilers.

One of the oldest problems studied by the formal methods community is
the correctness of compilers. The early approaches were focused on proving
that a compiler is correct (see, for example, [134]). The idea is to show that the
semantics of the input program are in a certain relationship with the semantics
of the output program. The relationship usually ensures that the two programs
have the same observable behavior. Although there is recent research in the
same vein [124], there are also attempts to go around the problem and avoid
the full verification of the compiler. One of these alternative approaches is
translation validation, proposed in 1998 by Amir Pnueli and others [149]. The
idea is to check the result of each particular compilation, instead of proving that
the compiler works for all possible inputs. To make it even easier, instead of
checking the whole compilation, the idea can be applied to each compilation
phase. The technique was used to find bugs in GCC (the GNU C compiler) [138].
A related technique, credible compilation [154], consists of modifying the com-
piler to output a proof for each compilation. It is then possible to check the
proof of equivalence using a small trusted proof checker. In 2004, Benton [36]
introduced a way of doing equivalence proofs that seems to fit well with the
Boogie language.

The problem of correctness of a program verifier has certain peculiarities.
The ‘observable behavior’ of a Boogie program, which is not executable, is
whether it is correct or not, according to Definition 2 (on page 15). It follows that
two Boogie programs are equivalent if they are both correct or both incorrect.
As with normal compilers, a transformation of a Boogie program is correct if
the output is equivalent to the input. Section 3.2 says that some transformations
in FreeBoogie are incorrect and it identifies soundness and completeness as
weaker guarantees.

The Dragon Book analyzes the problem of correctness from an algorithmic
point of view, but it does not address the problem of correctness of an implemen-
tation; the Dragon Book discusses the overall pipeline architecture of a compiler
but does not go into details of code organization. The Design Patterns book [77]
partly covers this area. For example, the visitor pattern, the facade pattern, and
the factory method pattern, which were used to explain FreeBoogie’s design,
are all presented in that book. Of these three patterns, only the visitor pattern
was briefly analyzed in Section 3.3.3.

“[A] facade provide[s] a unified interface to a set of interfaces in a subsystem.

39

Facade defines a higher-level interface that makes the subsystem easier to use.”
In this dissertation a more specific meaning is used—a class (or interface) that
provides almost all the services of a package. The non-facade classes are still
visible from outside, in case they are needed, but their use is discouraged.

A factory method creates an object and returns it. The Design Patterns book
emphasizes that the method call may be dynamically dispatched to subclasses.
While this aspect is used by the backend, the factory methods for Boogie AST
are static. Such methods lead to code that is easier to read because of their
descriptive names and because type inference for generics works better for
methods than for constructors in Java 6. Such methods also make possible
the implementation of more sophisticated creation patterns, such as singleton
and hash-consing.

3.8.3 The Expression Problem

The visitor pattern is a way of achieving multiple dynamic dispatch, but it
is also a partial solution to the expression problem. The term was coined by
Philip Wadler in an email [173] from 1998: “The Expression Problem is a new
name for an old problem. The goal is to define a datatype by cases, where
one can add new cases to the datatype and new functions over the datatype,
without recompiling existing code, and while retaining type safety.” Since most
languages have modular compilation, the restriction on recompilation usually
means that one is allowed to add new modules but not to modify existing ones.
Wadler continues: “One can think of cases as rows and functions as columns
in a table. In a functional language the rows are fixed [. . .] but it is easy to add
new columns. In an object-oriented language, the columns are fixed [. . .] but it
is easy to add new rows.”

The visitor pattern is a way of easily adding new columns in an object-
oriented language. In compilers, functionality tends to evolve more than the
AST. This is one reason why functional languages are well-suited for implement-
ing compilers and it is why most compilers written in object oriented languages
use the visitor pattern. However, once the visitor pattern is used, it becomes
hard to modify the AST.

FreeBoogie is written in an object oriented language and uses the visitor
pattern. To add new functionality, one implements a new evaluator or a new
transformer, both being visitors. The code implementing the new functionality
goes in a new class so, in Wadler’s terminology, it is easy to add columns. If
a new type of node must be added to the AST then one new class must be
added to the AST data structures. So far, the existing code was not touched
and no recompilation is necessary. The next step, however, is to add a methods

40

to Evaluator, the root of the hierarchy of visitors. In Wadler’s terminology, it
is hard to add rows. What is problematic in practice is not the recompilation
time, but the fact that the AST data structures and the base classes for visitors
must be kept in sync. Because the AST data structures, the class Evaluator, and
the class Transformer are generated by AstGen from the same description of the
abstract grammar they are automatically in sync. In other words, AstGen can
be seen as a patch that brings the visitor pattern closer to the ideal solution for
the expression problem. (But recompilation is still necessary when new AST
nodes are added.)

Another approach to the expression problem is to modify the programming
language to support multiple dispatch [46, 49].

3.8.4 Provers

Many languages understood by theorem provers (such as the SMT language, the
Simplify language, and the PVS prover language) are based on S-expressions.
Like XML [41] (the extensible markup language), S-expressions provide a syntax
that is easy to parse. Briefly, they are a fully parenthesized preorder print of an
AST. Where XML says <tag> · · · </tag>, S-expressions say (tag ...). (There is
no equivalent for XML attributes.) One year before writing about the semantics
of programs, John McCarthy presented [129] in 1960 how S-expressions are used
in the programming system LISP (list processing). “S stands for symbolic.”

Internally, FreeBoogie uses a tree of strings to represent symbolic expressions.
To save memory and to speed up otherwise expensive structural comparisons
FreeBoogie uses hash-consing. The idea was described by Andrei Ershov [68]
in 1957, and one year later an English translation was available. Before creating
a tree node, a global hash table is searched to see if a structurally similar node
already exists. The creation of nodes takes a constant amount of time on average,
structural comparison of tree nodes is done then by a simple pointer comparison,
and much memory is saved because duplication of information is avoided. A
simple implementation of hash-consing is easy, but offering proper library
support is not trivial—a solution [69] for OCaml was published in 2006.

The tree of strings was chosen as the main data structure of freeboogie.backend
because it is a natural representation of the SMT language. The SMT commu-
nity [27] produced a language, a command language, theories, benchmarks;
it also organizes an annual competition between SMT solvers. The language
defines, on top of S-expressions, the meaning of about twenty keywords and
about a dozen ‘attributes’. The theories are the ‘standard library’ of the SMT
language. Each defines the meaning of a set of symbols. For example, the theory
Ints, defines the semantics of the symbols 0, 1, ~, -, +, *, <=, <, >=, and >. The

41

benchmarks include hand-crafted queries, random queries, queries produced
from hardware verification tasks, and queries produced from software verifi-
cation tasks. A random sample of the benchmarks is used in the annual SMT
competition. SMT solvers under active development with good support for
quantifiers include Z3 [59], and CVC3 [29].

Since the SMT language is supported by several provers that compete each
year on software verification tasks, it makes a natural target for FreeBoogie. A
better way to interact with provers is through an API, which is unfortunately
not standardized. Z3 has a C API, a .NET API, and an OCaml API; CVC3 has a
C API and a C++ API, and is open source.

3.8.5 Code Generators

The Boogie AST is generated by AstGen; the Boogie parser is generated by
ANTLR; the command-line parser is generated by CLOPS.

ANTLR [144] is probably the most widely used parser generator for Java.
The grammar is LL(k), but backtracking can be optionally activated. FreeBoogie
sticks to LL(k) so that the generated parser is as fast as possible. ANTLR can
construct AST trees. This facility is not used. It is not easy to convince ANTLR
to generate different data structures for the AST. For example, it is not easy to
convince ANTLR to generate immutable ASTs. Also, it is not easy to convince
ANTLR to generate the root of the visitors’ hierarchy in sync with the AST
data structures.

CLOPS [102] is a Java parser generator specialized for command lines. Free-
Boogie is one of its first users.

42

Chapter 4

Optimal Passive Form

“Active Evil is better than Passive Good.”

— William Blake

Flanagan and Saxe [73] explain how passivation avoids the exponential explo-
sion of VCs. This chapter (1) gives a precise definition for passivation and
(2) proceeds to examine its algorithmic difficulty.

4.1 Background

4.1.1 VC Generation with Assignments

The best way to understand why passivation is such a good idea, especially
from the point of view of performance, is to compare it to a VC generation
method that skips passivation. This means that we have to look ahead at the
next stage of the pipeline and see how it would have to work if passivation is
not performed. For this reason, the methods presented in this subsection will
only be fully justified in the next chapter.

Weakest Precondition for Core Boogie

The weakest precondition transformer for the three statements that can appear
in a flowgraph (see Definition 7 on page 32) is

wp (assume p) b ≡ p⇒ b(4.1)

wp (assert p) b ≡ p ∧ b(4.2)

wp (u := e) b ≡ (u← e) b(4.3)

Here b and p are predicates as defined in Chapter 2, where the predicate trans-
former (u ← e) is also introduced. Symbolically, the effect of (u ← e) is to
substitute the expression e for each occurrence of the variable u.

43

assert p0(u)

u := e1(u) u := f1(u)

assert p1(u)

u := e2(u) u := f2(u)

assert p2(u)

assert pn−1(u)

u := en(u) u := fn(u)

assert pn(u)

...

Figure 4.1: Exploding diamonds

Each node x of the flowgraph gets a precondition ax and a postcondition bx

according to the rules

bx ≡
∧

x→y
ay(4.4)

ax ≡ wp x bx(4.5)

The query sent to the prover is the predicate a0.
Figure 4.1 shows a program that leads to a very big query. Let us denote

by qk(u) the postcondition of the statement assert pk(u). Then qn(u) ≡ > and
qn−1(u) ≡ pn(en(u)) ∧ pn(fn(u)). In general, all qks will be conjunctions of
function compositions, so let us use a simplified notation just here, while we
evaluate the memory usage of the weakest precondition method.

(4.6) qn−1 = {pnen, pn fn}

Here pe stands for the function composition p ◦ e, and {p, q, r} stands for the
conjunction p ∧ q ∧ r. In general, the rule is

(4.7) qk−1 = {pkek, pk fk, qkek, qk fk}.

For example,

(4.8) qn−2 = {pn−1en−1, pn−1 fn−1, pnenen−1, pn fnen−1, pnen fn−1, pn fn fn−1}

All these expressions are represented using SMT trees, which are really dags
because of hash-consing. In evaluating the memory space necessary to represent

44

pk

ek fk

pk
qk qk

Figure 4.2: The trie constructed by (4.7)

a predicate we must take into account subexpressions that appear more than
once. One such subexpression is u, which appears quite often. Is there any other
sharing in, say, the predicate qn−2? Well, it contains pn−1en−1 and pnenen−1,
which both end in en−1, so qn−2 contains en−1 at least twice.

In general, if we regard ek, fk, and pk as (distinct) letters from some alphabet
and qk as a set of strings, then we are interested in the size of the trie that
represents the reversed strings of qk. Figure 4.2 shows the trie for qk−1. (This
trie is, roughly, an upside-down depiction of the SMT tree, except that SMT tree
nodes correspond to edges in the trie.) If we denote by |qk| the number of edges
in the trie necessary to represent qk, then

|qn−1| = 4,(4.9)

|qk−1| = 2|qk|+ 4.(4.10)

So |q0| = 2n+2− 4. Of course, the SMT tree for the whole query will also contain
p0, u, and a node for ∧. In any case, the size of the query is Θ(2n). We will see
later that if passivation is applied first, then the size of the query is Θ(n). This
is one reason why we passivate programs.

Flanagan and Saxe [73, Section 4] identify sequences of assignments like
x := x + x as another source of exponential explosion. Such programs are
problematic only in the absence of hash-consing.

Strongest Postcondition of Core Boogie

The strongest postcondition is computed as follows.

sp (assert/assume p) a ≡ a ∧ p(4.11)

sp (u := e) a ≡ ∃v,
(
(u← v) a

)
∧
(
u = (u← v) e

)
(4.12)

Again, each node y gets a precondition ay and a postcondition by.

ay ≡
{
> if the node y is initial∨

x→y bx otherwise
(4.13)

by ≡ sp y ay(4.14)

45

assert u1 ∧ . . . ∧ un

u1 := v1

u2 := v2

u3 := v3

un := vn

· · ·

Figure 4.3: Exploding predicates

Given a predicate f and a sub-predicate e such that f ≡ p e, we say that
e occurs in a positive position in f when |p ⊥| ⇒ |p >|; similarly, e occurs in a
negative position in f when |p >| ⇒ |p ⊥|. For validity queries, SMT solvers
cope well with ∀ in positive positions and with ∃ in negative positions, but
not the other way. The quantifier in (4.12) will be on the left hand side of an
implication when it is sent to the prover (see Chapter 5), so it is not a problem.

As it turns out, in the presence of hash-consing there is no exponential
explosion on the example in Figure 4.1. There is, however, an exponential
explosion for programs like the one in Figure 4.3. In this example, a control flow
path goes up–down through all statements, and for each assignment there is
also an edge that skips it. The postcondition of the last assignment includes 2n

conjunctions of the form w1 ∧ . . . ∧ wn, where wk ∈ {uk, vk}. Even with sharing,
these conjunctions require Ω(2n) space.

4.1.2 A Few Concepts from Computational Complexity

One of the main results of this chapter is that a certain variation of passivation
is NP-complete. This section is a brief reminder of what NP-complete means.

Very roughly, The RAM (random access memory) model of computation
consists of a processor and a memory whose words each have a fixed number
of bits and are indexed by integers that fit in a word. The processor can execute
binary operations between two memory words and store the result in a (not
necessarily distinct) third word in one time step. Operations include modular
arithmetic and bitwise logic. The processor can also (1) request one word of
input and (2) produce one word of output.

Definition 8. A computational problem is a relation P ⊆ L× L, where L is the
set of finite sequences of words w1, w2, . . . , wn, for all n.

We say that y is a valid solution (or valid output) for the problem instance
(or input) x when xPy. An algorithm is the finite set of instructions that the
processor is hardwired to carry out. We say that an algorithm is a solution to

46

a problem when it produces valid output for every input. (For simplicity, let
us assume that there is a valid output for every input.) We write |w| for the
length n of a sequence w1, w2, . . . , wn.

Definition 9. The time complexity of an algorithm is a function t : L → Z+

that associates with each input the number of steps executed by the algorithm
before producing the output. The space complexity of an algorithm is a function
s : L → Z+ that associates with each input the number of memory words
touched by the algorithm before producing the output.

The worst case complexity T(n) is the maximum complexity t(x) over in-
puts x of size n. Similarly, one can define an average complexity, if probabilities
are associated to inputs.

Definition 10. A computational problem is in the complexity class P when it has
a solution whose worst case time complexity has a polynomial upper bound.

Definition 11. A decision problem is a set D ⊆ L.

Equivalently, a decision problem is a computational problem whose answer
is 0 or 1, that is, a problem with at most two valid outputs.

Definition 12. A decision problem D is in the complexity class NP when there
exists a subset R ⊆ L× L with the properties:

1. There is a polynomial p such that |y| ≤ p(|x|) whenever xRy.

2. For all x ∈ D there is an y such that xRy. There is no such y for x /∈ D.

3. The problem of deciding whether xRy is in P.

The element y is a proof that x ∈ D; a solution to problem 3 in the above
definition is a verification procedure.

Remark 6. Definition 12 says that a problem is in NP when it may be solved
in polynomial time by a nondeterministic machine. If a problem is solved in
polynomial time by a nondeterministic machine, then we may record the choices
made as the proof y. In the other direction, a nondeterministic machine may
try all possible proofs y in polynomial time, because their length is bounded by
a polynomial.

This definition applies to decision problems, but we will also use it with
respect to optimization problems.

Definition 13. Given a partial cost function c : L× L ⇀ R+, an optimization
problem asks for an algorithm that for each input x produces an output y, such
that c(x, y) is minimized. We say that y is a feasible solution for input y if
c(x, y) is defined.

47

Each optimization problem has an associated decision problem that asks
whether there exists a solution of cost ≤ k, for some constant k. We say that an
optimization problem is in NP when its associated decision problem is in NP.
Note that if we have a solution to the associated decision problem, then we can
find the cost of an optimal solution with a logarithmic overhead by using binary
search. This is an example of reducing a problem to another.

Definition 14. An oracle for problem P solves any instance of P in constant
time and constant space.

Definition 15. A decision problem P reduces to a decision problem Q when
there is a polynomial time solution for P that uses an oracle for Q as a subroutine.
A decision problem P transforms to a decision problem Q when there is a
function f : L→ L computable in polynomial time such that x ∈ P if and only
if f (x) ∈ Q, for all inputs x.

Remark 7. If problem P transforms to problem Q, then problem P also reduces
to problem Q.

Definition 16. A problem is NP-complete when it is in NP and all other prob-
lems in NP transform to it. A problem is NP-hard when all problems in NP
reduce to it.

As before, we say that an optimization problem is NP-complete/NP-hard
when its associated decision problem is NP-complete/NP-hard.

No polynomial solution is known for any NP-complete problem. The only
way to handle large instances of NP-complete problems in practice is to settle
for approximations or heuristics.

4.1.3 Algorithms and Data Structures Reminder

One of the proofs given later is by transformation from the mins problem
(maximum independent node set). Then a conjecture is supported by a heuristic
argument that makes use of the lis problem (longest increasing subsequence)
and the maximum bipartite matching problem. This section serves as a brief
reminder of what these problems are and what are the best algorithms known
for them.

Maximum Independent Node Set

Definition 17. Two nodes of a graph are adjacent when they are the endpoints
of some edge. A set of nodes is independent when its elements are pairwise
non-adjacent.

48

LIS(w1, w2, . . . , wn)

1 r := 0
2 for i from 1 up to n
3 l := 1 + predecessor(wi − 1)
4 r := max(r, l)
5 update(wi, l)
6 return r

Figure 4.4: A solution for lis

Problem 1 (maximum independent node set). Given is a graph. Find a largest
independent set of nodes.

The associated decision problem asks whether there is an independent set of
size ≥ k.

Example 2. The graph has one independent set of size 0 () three
independent sets of size 1 (, ,) and one of size 2 (). The
latter is a solution to this instance of the mins problem. There are also three sets
of nodes that are not independent (, ,).

This problem is known to be NP-complete.

Longest Increasing Subsequence

Definition 18. A subsequence is obtained from a sequence w1, w2, . . . , wn by
removing some of its elements and maintaining the relative order of the others.

Problem 2 (lis). Given is a sequence of integers. Find a subsequence of it that
has maximum length.

The best known solution for this problem works in Θ(n lg lg n) time. It
uses a data structure that maps integers to integers and supports the oper-
ations update(k, v) that binds the key k to the value v and predecessor(k) that
returns the value last bound to the largest key that is ≤ k. For example, after
update(2, 1), update(1, 2), update(2, 3), the query predecessor(1) returns 2 and the
queries predecessor(2) and predecessor(3) return 3. For simplicity, let us assume
v ∈ R+, which means that predecessor(k) returns 0 if the value of k filters out all
previous updates. The update and predecessor operations are supported by bi-
nary search trees in Θ(lg n) time and by van Emde Boas trees in Θ(lg lg n) time.
Figure 4.4 shows an algorithm that uses such a data structure to solve the lis
problem in Θ(n lg lg n) time. Strictly speaking, the algorithm only returns the
length of a longest subsequence, but it can be easily modified to return the
subsequence.

49

1 procedure makeEven(u : int) returns (v : int) {
2 L0: v := u; goto L1, L2;
3 L1: assume !even(v); goto L3;
4 L2: assume even(v); goto L4;
5 L3: v := v + 1;
6 L4: assert even(v); return;
7 }

0

1 2
3

4

Figure 4.5: An example of a Boogie program

Maximum Bipartite Matching

Definition 19. A graph is bipartite when its nodes can be partitioned into two
subsets, the left nodes and the right nodes, such that all edges are between a left
and a right node.

Definition 20. Given a graph, a matching is a subset of pairwise non-adjacent
edges. Two edges are adjacent if they share (at least) a node.

Problem 3 (maximum bipartite matching). Given is a bipartite graph. Find a
largest matching.

The old Hungarian algorithm [113] solves the problem in O(n3) time. Other
algorithms solve the problem in O

(
min(m

√
n, n2.38)

)
time. Here, m is the num-

ber of edges and n is the number of nodes.

4.1.4 Examples, Terminology, and Notations

The running example in Figure 4.5 is the simplest interesting case for passivation.
Variable v is the variable of interest. With respect to it, the nodes are read-
only (), write-only (), or read-write (). A statement that does not involve the
variable of interest will be drawn as a white circle (). There is an easy mnemonic
rule for these notations: Since execution flows downward and reading precedes
writing, the upper half corresponds to reading and the lower half to writing.
The terms read node (for or) and write node (for or) will also be used.
In Figure 4.5, nodes 1, 2, 3, and 4 are read nodes, while nodes 0 and 3 are write
nodes.

Figure 4.6(a) shows a flowgraph with a slightly different drawing convention:
This time the arrows are missing and edges are understood to go downward.
This convention is not limiting because all inputs to the passivation phase are
dags. All nodes of this flowgraph read and write the variable of interest.

Figure 4.6(b) shows another flowgraph, using an even more complicated
drawing convention: A dotted edge x y stands for a read-only node ()
that has (normal) incoming edges from node x and from node y. So Figure 4.6(b)
depicts a flowgraph with 7 nodes and 8 edges. Similarly, the third example in

50

0

1 2
3 4

5 6

(a)

0

1

2

3

4

(b)

0

1
2
3
4

5
6
7
8

(c)

Figure 4.6: Various interesting special cases

1 procedure makeEven(u : int) returns (v : int) {
2 L0: v0 := u; goto L1, L2;
3 L1: assume !even(v0); goto L3;
4 L2: assume even(v0); goto L5;
5 L3: v1 := v0 + 1;
6 L4: assert even(v1); return;
7 L5: v1 := v0; goto L4;
8 }

0

1 2
3

4

5

Figure 4.7: A passive form for the program in Figure 4.5

Figure 4.6(c) represents a flowgraph with 14 nodes (9 write-only and 5 read-
only) and 18 edges. Without the dotted edge convention, Figure 4.6(c) would be
much bigger and harder to grasp.

4.2 The Definition of Passive Form

The main purpose of this section is to give a precise formulation for the problem
of finding a good passive form.

Example 3. A passive form of the program in Figure 4.5 appears in Figure 4.7.
It is obtained by introducing versions 0 and 1 of the variable v and by inserting
the copy statement 5.

In general, a copy statement (or copy node) has the shape vi := vj and is
drawn as a filled square (). A copy node is a read-write node.

Example 3 contains only one variable and this is the case we shall analyze
in detail. Multiple variables do not introduce any new complications: A pro-
gram can be made passive with respect to each of its variables in turn, while
considering the others to be constants.

Definition 21. A program is passive when (1) on all execution paths each
variable is written at most once, and (2) no statement reads and writes the same
variable.

51

Remark 8. Obtaining a passive form is similar to automatically deriving a func-
tional equivalent of a loop-less imperative program. The remaining assignments,
which are eventually transformed into assumptions, can be seen as let bindings.

The passive form of a program G′ is an equivalent program G that is passive.
If there are execution paths in program G′ that write to variable v multiple times
then those writes must be changed to write to distinct variables in program G.
We denote the variables of program G by vi where i is some integer and say
that vi is version i (of variable v). To maintain the semantics, each read from
variable v must be replaced by a read from the latest written version. As
Example 3 illustrates, it is necessary sometimes to alter the structure of the
program, and in current approaches [73, 25] this is always done by inserting
copy statements of the form vi := vj. The following definition makes these
notions precise.

Definition 22. A program G whose flowgraph has nodes V is a passive form
of the program G′ whose flowgraph has nodes V′ when

1. program G is passive and

2. there exists a mapping c : V′ → V, a write-version function w : V → Z,
and a read-version function r : V → Z such that

(a) statement structure is preserved : the statement c(x) is obtained
from statement x by replacing each occurrence of variable v by some
variable vi,

(b) the new nodes are copy statements : all statements in C = V − c(V′)
have the form vi := vj,

(c) the flow structure is preserved : there is an edge x → y in program G′

if and only if there is a path c(x)
Q
 c(y) in program G that uses only

copy nodes as intermediate nodes, that is,
(
Q− {x, y}

)
⊆ C; also, all

copy nodes have at least one outgoing edge,

(d) the initial node is preserved : c(0) = 0,

(e) writes and reads are confined : each statement x in program G may
only read version r(x) and may only write version w(x),

(f) the read version is always the latest written version : w(x) = r(y) if
x is a write node, y is a read node, and there is a path x y in G that
contains no intermediate write nodes.

We say that functions c, w, and r witness that program G is a passive form
of program G′.

52

Remark 9. The definition is fairly straightforward but it is important to have
it written down. The definition naturally leads to two notions of optimality
(which have been previously missed) and to a straightforward algorithm that is
better than some previous solutions.

Example 4. If a program starts with goto l1, . . . , ln and continues with lk :
S; return for all k, then S is a passive form of it. Thus, the passive form may be
smaller than the original program, although we will usually keep the mapping c
injective.

It is easy to see that the passive form of a program G is correct if and only
if program G is correct. The reason is that every read of a version by the
passive form reads the same value as the corresponding read of the variable in
program G, and every write of a version by the passive form writes the same
value as the corresponding write to the variable in program G.

4.2.1 Types of Passive Forms

The requirement that program G is passive can be expressed as a constraint on
the write-version function w.

Proposition 2. If the write-version function w is a witness that program G is a
passive form, then the existence of a path x y where both x and y are write
nodes implies that w(x) 6= w(y).

A write node x writes to version w(x). According to Definition 21, the
same version must not be written by any other node on an execution path that
includes node x.

Proposition 2 suggests that a “passive form” may be called more explicitly
“distinct-version passive form.” Definition 22 is very general. The passive
forms obtained by previous approaches all satisfy a stronger definition that
corresponds to the intuition that versions increase in time.

Definition 23. An increasing-version passive form is a passive form witnessed
by a write-version function w with the property that w(x) < w(y) whenever
there is a path x y from a write node x to another write node y.

Programs have multiple passive forms, some better than others. There are
two natural notions of optimality.

Definition 24. A passive form is version-optimal when it uses as few variable
versions as possible.

Definition 25. A passive form is copy-optimal when it uses as few copy nodes
as possible.

53

We say that a version i is used by a passive form when there is a write node
whose write version is i. This convention simplifies the later analysis, but it
requires some explanation. Why is it OK to ignore the read version of read
nodes? The read version either is written by the program, in which case it was
already counted as the write version of another node, or it is not written by the
program. All versions that are not written are essentially equivalent. In other
words, by ignoring the read versions of read nodes we undercount by one, if
the uninitialized variable is read by the original program. That is a small price
to pay for a reduction in the number of special cases that we must consider in
the following analysis.

Let us summarize the information in Definitions 22, 23, 24, and 25. Each
program G determines a set of (distinct-version) passive forms according to
Definition 22; each program determines a set of increasing-version passive
forms according to Definition 23. Each increasing-version passive form is a
distinct-version passive form. Each passive form has two associated costs—the
number of versions and the number of copy nodes. Therefore, for each program
there are four (not necessarily distinct) interesting classes of passive forms:

1. the version-optimal increasing-version passive forms,

2. the copy-optimal increasing-version passive forms,

3. the version-optimal distinct-version passive forms, and

4. the copy-optimal distinct-version passive forms.

One interesting problem is whether these four classes always overlap. In
other words, is there always a passive form that is optimal by all measures and
also follows the intuitive rule that versions do not decrease in time? But, before
addressing this question, let us first look at how good a version-optimal passive
form can be.

Lemma 1. The number of versions of any passive form is greater or equal to
the number of write nodes on any execution path in the original program.

Proof. Consider an execution path P in the original program and its subset of
write nodes Q ⊆ P. For two nodes x, y ∈ Q, we can assume that there is a
path x y. According to Proposition 2, their write versions are distinct. Hence,
|w(Q)| = |Q|.

We can now show two facts about how different types of passive forms
relate to each other—Proposition 3 and Proposition 4.

Proposition 3. There are programs for which an increasing-version passive
form cannot be both version-optimal and copy-optimal.

54

0[−1
0]

1[01] 2[01]

3[12] 4[12]

5[23] 6[23]

7[12]

(a) version-optimal

0[−1
0]

1[01] 2[02]

3[12] 4[23]

5[23] 6[34]

(b) copy-optimal

Figure 4.8: Optimal increasing-version passive forms for Figure 4.6(a)

Proof. One such program has the flowgraph depicted in Figure 4.6(a) on page 51.
A version-optimal passive form appears in Figure 4.8(a) and a copy-optimal
passive form appears in Figure 4.8(b). In these drawings, each node x is labeled
with x[r(x)

w(x)]. For example, the label 0[−1
0] is put on node 0, which has read

version −1 and write version 0.
It is easy to see that these solutions are optimal. According to Lemma 1 the

number of versions in any passive form is ≥ 4 and Figure 4.8(a) uses 4 versions.
Figure 4.8(b) uses 0 copy nodes.

It remains to show that there is no optimal increasing-version passive form
for this program that uses 4 versions and 0 copy nodes. We do this by showing
that all increasing-version passive forms that have no copy node must use
≥ 5 versions. According to Definition 23, w(0) < w(1) < w(3) and w(2) <

w(4) < w(6). Because there are no copy operations, the Definition 22 gives us
w(3) = r(5) = w(2). Hence, the 5 used versions w(0), w(1), w(3) = w(2), w(4),
and w(6) are distinct.

The second fact justifies the unintuitive choice to allow versions to decrease
in time.

Proposition 4. There are programs for which copy-optimal distinct-version
passive forms use strictly fewer copy nodes than copy-optimal increasing-
version passive forms.

Proof. One such program has the flowgraph depicted in Figure 4.6(b) on page 51.
A distinct-version passive form with no copy nodes appears in Figure 4.9. (Note
that the two nodes represented earlier with dotted lines are now explicit.)

It remains to show that there is no increasing-version passive form than uses
no copy node. Suppose that there is one. Then, w(1) = w(4) and w(2) = w(3).
But Definition 23 tells us that w(1) < w(2) and w(3) < w(4). Contradiction.

55

0[−1
0]

1[01]

2[12]

3[02]

4[21]

5[1
−1] 6[2

−1]

Figure 4.9: A copy-optimal passive form for Figure 4.6(b)

4.3 The Version-Optimal Passive Form

4.3.1 The Algorithm

Proposition 4 says that it is beneficial to allow versions to decrease in time if
we are looking for a copy-optimal passive form. This section shows that this
is not the case if the objective is a version-optimal passive form. The proof
is constructive—an algorithm that finds a version-optimal increasing-version
passive form that is as good as any passive form can be.

The algorithm from Figure 4.10 is the best practical solution for the passiva-
tion problem. It is very similar to the algorithm of Flanagan and Saxe [73], being
changed so that it always finds a version-optimal passive form. The method
VersionOptimalPassiveForm(G) modifies the program G into one of its passive
forms. (The real implementation in FreeBoogie transforms the program without
mutating it, as was explained in Section 3.3.3.)

Let us see, slowly, why this algorithm is correct. The mapping c : V′ → V
from nodes in the original program to nodes in its passive form is c(x) = x.
The method Read(y) computes the read-version r(y), but only for nodes y that
exist in the original graph; similarly, the method Write(y) computes the write-
version w(y), but only for nodes y that exist in the original graph. With a
different notation, the read-version function and the write-version function are
defined to be

r(y) =

{
maxx→y w(x) if y has predecessors
−1 otherwise

,(4.15)

w(y) = r(y) + [node y is a write node].(4.16)

If we unfold r,

(4.17) w(y) = [y writes] +

{
maxx→y w(x) if y 6= 0
−1 if y = 0

,

it becomes clear that w(y) + 1 is the maximum number of write nodes on a
path 0 y. It follows that r(y) and w(y) computed by (4.15) and (4.16) are in

56

READ(y) // memoized
1 r := −1
2 for each predecessor x of y
3 r := max

(
r, Write(x)

)
4 return r

WRITE(y) // memoized
1 r := Read(y)
2 if y is a write node
3 r := r + 1
4 return r

VERSIONOPTIMALPASSIVEFORM(G)

1 for each node x of G
2 substitute reads of v by reads from version Read(x)
3 and writes of v by writes to version Write(x)
4 for each edge x → y of G
5 if Write(x) 6= Read(y)
6 create a new node z :=

(
vRead(y) := vWrite(x)

)
7 remove the edge x → y
8 add edges x → z and z→ y

Figure 4.10: A practical algorithm for finding a passive form

the range −1 . . n− 1, where n is the maximum number of write nodes on an
execution path. Moreover, w(y) can be−1 only if y is not a write node. So far we
know that for write nodes y in the original graph, w(y) is in the range 0 . . n− 1.

The output graph also has copy nodes z created on line 6 of VersionOpti-
malPassiveForm. Each such node corresponds to an edge x → y in the original
graph and has w(z) = r(y). Hence, the version written by copy nodes is also in
the range 0 . . n− 1. (If r(y) = −1 then w(x′) = −1 for all predecessors x′ of y,
including x, so there would be no copy node created.)

It follows immediately from Lemma 1 that no passive form has a number of
versions < n, so we proved that if the output of VersionOptimalPassiveForm is
indeed a passive form then it must be version-optimal. Most of the conditions
imposed by Definition 22 on page 52 are easy to check.

1. Passive: The write version increases at every write node, so it cannot be
the same as the write version of any preceding node.

2. (a) Statement structure is preserved : The statement structure is only
modified by lines 2–3.

(b) The new nodes are copy statements : New nodes are only created on
line 6.

57

(c) The flow structure is preserved : Edges are modified only on lines 7–8.
Replacing x → y by x → z→ y maintains paths, because node z has
no other adjacent edges.

(d) The initial node is preserved : We have c(x) = x for all nodes x in the
original graph.

(e) Writes and reads are confined : For existing nodes, see lines 2–3. For
each copy node we can simply choose the read version and the write
version appropriately.

(f) The read version is always the latest written version : For each
edge x → y we have w(x) = r(y). This is true even for edges
adjacent to copy nodes. Also w(x) = w(y) if node y is not a write
node. If there is a path x0 → x1 → · · · → xn → xn+1, and x1, . . . , xn

are not write nodes then w(x0) = w(x1) = · · · = w(xn) = r(xn+1).

We proved the following theorem.

Theorem 1. The algorithm in Figure 4.10 constructs a version-optimal (distinct-
version) passive form, which is also an increasing-version passive form.

The algorithm is fast. The first loop of VersionOptimalPassiveForm (lines 2–3)
is executed once for every node x in V; the second loop (line 5) is executed
|E| times, where E is the set of edges in the flowgraph. The substitutions
performed on lines 2 and 3 can be done in time proportional to the AST size |x|
of the statement x. Because of memoization, the bodies of Read and Write are
executed at most |V| times each. One way to memoize the two methods (that
is, to cache their results) is to have two integer fields in the data-structure
representing a flowgraph node. A sentinel value, say −2, would represent ‘not
yet computed’, while any other value would mean that the computation was
already done. These two memory cells per node are the only significant memory
used by the algorithm, apart from the memory used to represent the input and
the output.

Proposition 5. The algorithm in Figure 4.10 on page 57 uses Θ(|E|+ ∑x∈V |x|)
time and Θ(|V|) temporary space.

If the data-structure for representing a flowgraph node is immutable, then
memoization can be implemented using a hashtable, in which case the time
bound in Proposition 5 is true with high probability, but not always. Also, the
constant hidden by the space bound is bigger.

The input occupies Θ(|E|+∑x∈V |x|) space and only O(|E|+∑x∈V |x|) extra
space can be allocated in Θ(|E|+ ∑x∈V |x|) time, so the output must occupy,
asymptotically, the same amount of space as the input. In fact, the difference in
size is accounted entirely by the copy nodes.

58

assert p0(u−1)

u0 := e1(u−1) u0 := f1(u−1)

assert p1(u0)

u1 := e2(u0) u1 := f2(u0)

assert p2(u1)

assert pn−1(un−2)

un−1 := en(un−2) un−1 := fn(un−2)

assert pn(un−1)

...

(a) passive form

assert p0(u−1)

assume u0 = e1(u−1) assume u0 = f1(u−1)

assert p1(u0)

assume u1 = e2(u0) assume u1 = f2(u0)

assert p2(u1)

assert pn−1(un−2)

assume un−1 = en(un−2) assume un−1 = fn(un−2)

assert pn(un−1)

...

(b) no assignments form

Figure 4.11: Diamonds that do not explode

e1 e2 p2 f2 f1p1 p0

u1

u0

u−1

= = = =

⇒

⇒ ⇐

⇐

∧

∧

Figure 4.12: The weakest precondition of two diamonds (see Figure 4.1)

Proposition 6. The algorithm in Figure 4.10 creates O(|E|) copy nodes.

Example 5. If we apply this algorithm to the program in Figure 4.1 we obtain the
result in Figure 4.11(a), which is both copy-optimal (since it has no copy nodes)
and version-optimal (by Theorem 1). It is now trivial to get rid of assignments:
Just replace each assignment u := e by the assumption assume u = e (see
Figure 4.11(b)). The size of the weakest precondition of the initial node is now
linear in the size of the program. The weakest precondition consists of (1) the
expressions present in the program, (2) at most one new ∧ for each assertion,
(3) at most one new ⇒ for each assumption, and (4) at most one new ∧ for
each flowgraph node with multiple successors. Figure 4.12 shows the weakest
precondition SMT tree for the case n = 2.

The bounds given by Propositions 5 and 6 describe passivation with respect
to one variable. If there are k variables, then the bounds need to be multiplied
by k, in general. In core Boogie, however, statements write to at most one

59

variable. Since copy nodes for variable v are inserted only on edges going to
a statement writing to variable v, we can conclude the following that the total
number of copy nodes is O(|E|).

The passive form computed for Example 5 happened to be copy-optimal. In
general, this is not the case. In fact, sometimes the algorithm introduces clearly
redundant copy nodes. For example, suppose that a read node x has three
predecessors with the write-versions 0, 0, and 1, respectively. The algorithm pre-
sented so far will insert two copy nodes v1 := v0 between the predecessors with
write-version 0 and node x, but only one is enough—copy nodes can be fused
as long as the flowgraph structure is preserved (condition (c) of Definition 22
on page 52). It is easy to modify the algorithm such that copy nodes inserted
before a given node x do not repeat. For example, one could keep a hashtable
that maps the triple (node x, version i, version j) to a copy node vi := vj that
gets reused if it is already in the set. (The technique is similar to hash-consing.)

4.3.2 Experiments

Flanagan and Saxe [73] did not try to produce an optimal passive form. Still,
their algorithm is very similar to the one presented here, so it is interesting to
see how it compares.

Microsoft Research released a set of Boogie programs [166] to serve as a basis
for comparing program verifiers. The algorithm of Flanagan and Saxe, however,
does not handle the goto statement, which is used extensively in the Boogie
benchmark. Luckily, it turns out that the goto statement is used in an interesting
way only in 16% of the implementations in the Boogie benchmark. In the other
1070 implementations, the flowgraphs are series–parallel, which means that
they correspond directly to programs that use only sequential composition and
nondeterministic choice for flow control. The FreeBoogie implementation of
the algorithm of Flanagan and Saxe simply refuses to give an answer if the
flowgraph is not series–parallel.

Figure 4.13 compares the results of the two algorithms. A variable for which
Flanagan and Saxe introduce m versions when n versions are enough contributes
to the disc centered at point (m, n). The more variables are in this situation, the
bigger the disc. (Its radius varies logarithmically.) The plot summarizes the
result of passivating 1177 variables.

For 70% of the variables in the Boogie benchmark both algorithms say that
one version is enough. For the other 30% variables the algorithm of Flanagan
and Saxe introduces on average 46% more versions than needed.

It is interesting to note that for randomly generated flowgraphs the difference
between the two algorithms is much bigger: Both algorithms say that only one

60

Flanagan and Saxe version count

ve
rs

io
n-

op
ti

m
al

ve
rs

io
n

co
un

t

1

4

7

10

13

16

1 4 7 10 13 16 19 22 25 28

Figure 4.13: Version count experimental comparison

version is needed in less that 1% of situations, while for the others the algorithm
of Flanagan and Saxe introduces on average 160% more versions than needed.
The generator of random Boogie programs is part of FreeBoogie. It works,
roughly, by generating random series–parallel flowgraphs by choosing graph
grammar productions randomly and then deciding for each node independently
with some probability whether it is a write node and whether it is a read node.

4.4 The Copy-Optimal Passive Form

We saw that finding a version-optimal passive form is rather easy. In contrast,
finding a copy-optimal passive form seems rather hard. This is more evidence
that the algorithm in Section 4.3 should be the algorithm of choice in practice.

4.4.1 The Increasing-Version Case

This section proves that finding a copy-optimal increasing-version passive form
is NP-complete. The proof is by transformation from the mins problem (which
is defined in Section 4.1.3). Let us see, on the example in Figure 4.14, how to
find a maximum independent set:

1. Transform the mins instance into a flowgraph. A node x is transformed
into the write only nodes xi and xo, the read only node xr, and edges
0 → xo and xo → xr and xi → xr. (The two incoming edges of node xr

are drawn in Figure 4.14 as xo xi .) An edge x y is transformed
into edges xo → yi and yo → xi.

2. Find a copy-optimal increasing-version passive form of the flowgraph.
We do this by invoking an oracle.

61

x y z

(a) mins instance

xo

xi

yo

yi

zo

zi

(b) flowgraph

Figure 4.14: Transformation from mins

3. Transform the passive form into a set I of nodes in the original graph.
The set I contains nodes x for which the corresponding node c(xr) is not
preceded by a copy node in the passive form.

To understand why this procedure indeed finds a maximal independent set
let us focus on step 3. Clearly, it defines a function from passive forms to sets of
nodes in the original graph. Since the definition of a passive form (Definition 22
on page 52) does not prevent redundant copy nodes, all nodes c(xr) might be
preceded by copy nodes and the corresponding set I needs not be independent.
The optimal passive form, however, will be among those passive forms without
redundant copy nodes. We say that a passive form witnessed by a write version
function w is non-redundant or that it has no redundant copy nodes when
it contains exactly one copy node before each node c(xr) with w(c(xi)) 6=
w(c(xo)). It is easy to see that this implies r(c(xr)) = max(w(c(xi)), w(c(xo))),
and that the copy nodes are necessary and sufficient.

The image of a non-redundant passive form is an independent node set I.
Assume, by contradiction, that the set I contains the adjacent nodes x and y.
Then w(c(xi)) = w(c(xo)) and w(c(yi)) = w(c(yo)). The edges xo → yi and
yo → xi imply paths c(xo) c(yi) and c(yo) c(xi) which in turn imply
that w(c(xo)) < w(c(yi)) and w(c(yo)) < w(c(xi)). We reached a contradiction,
as desired.

Conversely, every independent node set I is the image of some increasing-
version non-redundant passive form. We construct such a non-redundant
passive form as follows. Use the mapping c(x) = x. For x ∈ I set w(xo) =

w(xi) = 2; for x /∈ I set w(xo) = 1 and w(xi) = 3. If two nodes x and y are
adjacent then we must have w(xo) < w(yi) and w(yo) < w(xi), which are true
because at least one of the nodes x and y is not in the set I.

Moreover, a non-redundant passive form with n− k copy nodes corresponds
to an independent set of size k, where n is the number of nodes in the original
graph. Hence, the copy-optimal increasing-version passive form corresponds to
the maximum independent node set, which suggests the following theorem.

62

Theorem 2. The problem of finding a copy-optimal increasing-version passive
form is NP-complete.

To complete the proof of this theorem we must formulate the transformation
in terms of the corresponding decision problems and we must show that the
decision problem corresponding to finding copy-optimal increasing-version
passive forms is in NP.

The decision problem corresponding to the mins problem asks whether there
is an independent set of ≥ k nodes. The decision problem corresponding to
the problem of finding a copy-optimal increasing-version passive form for the
restricted family of flowgraphs illustrated in Figure 4.14(b) asks whether there
is a copy-optimal increasing-version passive form with ≤ n− k copy nodes. To
transform one into the other we simply make sure we use the same k.

Also, the problem is in NP because we can check quickly if a flowgraph is a
passive form of another, provided we are also given the mapping c, the write
function w and the read function r.

4.4.2 The Distinct-Version Case

The problem seems difficult even if we drop the increasing-version restriction.

Conjecture 1. The problem of finding a copy-optimal distinct-version passive
form is NP-complete.

The conjecture is that if we enlarge the search space (from increasing-version
passive forms to distinct-version passive forms) the problem remains just as
hard. In general, enlarging the set of feasible solutions can make an optimization
problem easier or harder. As a trivial example, consider the problem of finding
the maximum of each of these sets:

S1(n) = { 2 }(4.18)

S2(n) = { k | 0 < k < n and k is prime }(4.19)

S3(n) = { k | 0 < k < n }(4.20)

It is clear that S1(n) ⊂ S2(n) ⊂ S3(n) when n > 2, yet finding the maximum of
the set S2(n) is hardest. On the other hand, if the input is restricted, then the
problem cannot become harder.

Figure 4.15 illustrates a family of flowgraphs for which finding a copy-
optimal passive form is equivalent to certain known classic problems. It is the
example in Figure 4.6(c) plus decreasing adjacency lists added on the right. The
flowgraphs in this family consist of two chains of write only nodes plus some
read only nodes (depicted as dotted edges) that have one parent from the left

63

0

1
2
3
4

5 [2]
6 [3, 1]
7 [4, 2]
8 []

Figure 4.15: A two-chain flowgraph represented with adjacency lists

chain and one parent from the right chain. The adjacency lists represent the
dotted edges. For simplicity, let us also assume that all the statements have
distinct structures so that the mapping c must be injective. Since c is injective
we can be lazy and write x instead of c(x). We shall refer to flowgraphs in this
restricted class as two-chain flowgraphs .

Finding a copy-optimal distinct-version passive form in such a flowgraph
is equivalent to the bipartite matching problem. A dotted edge is selected
if and only if the write versions of its endpoints are equal. As before, we
focus on non-redundant passive forms, whose copy nodes are in one-to-one
correspondence with non-selected dotted edges. Hence, selecting a maximum
of edges corresponds to inserting a minimum of copy nodes.

In the bipartite matching problem, two edges can be selected simultaneously
if and only if they do not share an endpoint. This is equivalent to the condi-
tion that write versions for the nodes in one chain are distinct. If, by way of
contradiction, two edges x · · · z and y · · · z, which share an endpoint, are both
selected, then w(x) must equal w(y), which cannot happen since nodes x and y
are in the same chain. Conversely, if two edges x · · · x′ and y · · · y′ do not share
any endpoint then nodes x and x′ can be assigned one write version and nodes
y and y′ a different version. So they can be both selected.

According to Section 4.1.3, the best known algorithms for the bipartite
matching problem work in O(min(m

√
n, n2.38)) time, where m is the number

of dotted edges and n is the number of nodes. A lower bound would be
more useful towards justifying Conjecture 1. Unfortunately, none is known.
The equivalence to the bipartite matching problem does tell us, however, that
without finding a better algorithm for this classic problem we cannot hope
to find a copy-optimal distinct-version passive form as fast as we can find a
version-optimal one.

It is also interesting to note that solving two-chain flowgraphs under the
increasing-version restriction is equivalent to another classic problem, that of
finding the longest increasing subsequence. Again, a dotted edge is selected
if and only if its endpoints have the same write version. This time, the write

64

versions in the left chain have to be increasing, and so do those in the right
chain. This is equivalent to saying that two dotted edges can be selected if and
only if they do not intersect, endpoints included.

Now take a look at Figure 4.15. The nodes in the left chain are renumbered
so they are also increasing (like their write versions). The nodes in the right
chain are annotated with the list of nodes that they can reach through one dotted
edge. Each number in those lists represents a dotted edge. For example, the
number 3 in the list next to node 6 represents the edge 3 · · · 6. The task is now
to select at most one number from each adjacency list such that their sequence
increases. Two numbers from the same list cannot be simultaneously selected
because they correspond to dotted edges that intersect at their right endpoints.
Similarly, non-increasing numbers from different adjacency lists correspond to
intersecting dotted edges. See for example the edges represented by number 3
in the adjacency list of node 6 and by number 2 in the adjacency list of node 7.

If we now concatenate the lists and then extract a longest increasing subse-
quence we risk selecting more than one number from an adjacency list. To make
sure this does not happen, before concatenation, we sort each adjacency list in
decreasing order.

Note that all operations used to transform the two-chain flowgraph into
a sequence of numbers (renumbering nodes, sorting adjacency lists, concate-
nating them) can be done in linear time. Note also that computing the inverse
transformation can also be done in linear time. We conclude that the problem of
finding a copy-optimal increasing-version passive form is equivalent to lis, in
the strong sense that asymptotic bounds on the running time apply to both.

We managed to solve the two-chain family of flowgraphs faster in the
increasing-version case than in the distinct version case. This is a small piece
of evidence supporting Conjecture 1. However, keep in mind that (1) restrict-
ing the search space may make an optimization problem harder or easier and
(2) in a proof we should be looking at lower bounds instead of best known
upper bounds.

4.5 Conclusions

Passivation follows loop cutting and precedes the computation of the VC. It
increases the size of the program but its output will never lead to exponentially
large VCs.

The precise definition of passivation (in Section 4.2) enables a formal study
of its properties. The definition leads to four classes of passive forms that are
good, each in its own way (Section 4.2.1). The subsequent sections are concerned
with the complexity of finding a passive form: Version-optimal passive forms

65

are easy to find, copy-optimal increasing-version passive forms are hard to find.
A few open problems remain.

Problem 4. What is the complexity of finding a copy-optimal distinct-version
passive form?

In other words, settle Conjecture 1.

Problem 5. Find an approximation algorithm for the problem of finding a
copy-optimal increasing-version passive form. It should run in o(n2) time to
be practical.

Problem 6. Is it always possible to find a distinct-version passive form that is
both version-optimal and copy-optimal? If yes, then how? If no, then what kind
of trade-off can be achieved?

These problems are clearly inspired by the practice of developing a program
verifier, yet they are very algorithmic and puzzle-like in nature.

4.6 Related Work

Flanagan and Saxe [73] observed that programs without assignments never lead
to exponential VCs. They proposed passivation to avoid exponential explosion
altogether and implemented it in ESC/Java. The intermediate language of
ESC/Java, inspired by Dijkstra’s guarded commands [65], does not have a goto
statement, which makes the task of finding a passive form easier. Their method
for VC generation was proved correct in Coq by Vogels et al. [172].

The passive form used for program verification resembles the DSA (dynamic
single assignment) form used for a long time in the compiler community to
ease optimizations. Sadly, the literature on compiler optimizations is largely
disconnected from the literature on program verification. For example, in 2007
Vanbroekhoven et al. [170] identified copy operations as the key to reducing
the size of the DSA. Flanagan and Saxe used copy operations six years earlier.
Another example is the treatment of arrays. In the program verification area it is
standard to model them using a pair of uninterpreted functions, usually named
update and select. Once this is done, arrays are handled like all other variables
during passivation.

Barnett and Leino [25] describe the VC generation done by the Boogie tool.
The passivation stage is described informally. Since Boogie has goto statements,
arbitrary flowgraphs are handled.

Flanagan and Saxe [73], Vanbroekhoven et al. [170] as well as Barnett and
Leino [25] do not give a formal definition of what it means for a program to

66

be a passive form of another; Vogels at al. [172] does give such a definition,
which was developed independently from the one used in this dissertation [83].
Flanagan and Saxe [73], Barnett and Leino [25], and Vogels et al. [172] do not
define what it means for a passive form to be optimal. Barnett and Leino [25] do
discuss optimality, briefly. Vanbroekhoven et al. [170] employs a postprocess-
ing heuristic that reduces the number of copy operations introduced by their
passivation algorithm.

The algorithm presented in Section 4.3 should be compared with a textbook
algorithm for coloring comparability graphs [80]. Tries, used in Section 4.1.1
when analyzing the size of the VC, were introduced by Fredkin [76]. Sec-
tion 4.1.2 briefly enumerates a few basic definitions from computational com-
plexity, adapted mostly from Goldreich [79]. The importance of the class of
NP-complete problems was established by Cook [53], who proved that there
exist an NP-complete problem (boolean satisfiability), and by Karp [104], who
proved that 21 other problems are NP-complete. Section 4.1.2 uses the terms
‘transform’ and ‘reduce’ like Knuth [110].

The solution to the longest increasing subsequence was presented in 1977
by Hunt and Szymanski [97] and it exploits a fast data structure presented by
van Emde Boas et al. [169] the same year. An O(m

√
n) algorithm for bipartite

matching was given by Hopcroft and Karp [95] in 1973. Faster algorithms for
dense graphs are much newer (see, for example, Harvey [88]).

67

68

Chapter 5

Strongest Postcondition
versus Weakest Precondition

“Given a propositional theory T and a

proposition q, a sufficient condition of q is one

that will make q true under T, and a necessary

condition of q is one that has to be true for q to

be true under T. In this paper, we propose a

notion of strongest necessary and weakest

sufficient conditions.”

— Fangzhen Lin [126]

The main contributions of this chapter are (1) a comparison of the weakest
precondition method to the strongest postcondition method, (2) links between
different ways to define the semantics of subsets of Boogie (operational seman-
tics, Hoare logic, weakest precondition, strongest postcondition), and (3) an
algorithm for unsharing expressions.

5.1 Hoare Logic for Core Boogie

After passivation, FreeBoogie generates a VC using either a method based on the
weakest precondition predicate transformer or on the strongest postcondition
predicate transformer. The relation between these two methods is illuminated
by their relation to a Hoare logic for Boogie.

5.1.1 Relation to Operational Semantics

The Hoare triple {p} x {r}means that “if the store before executing statement x
satisfies predicate p then (1) the execution of statement x does not go wrong

69

and (2) if statement x is executed then the resulting store satisfies predicate r.”
(As elsewhere in this dissertation, by ‘statement’ we mean ‘simple statement’.)

(5.1)
{p} x {r} = ∀σ, p σ⇒(

∀ h
〈σ, x〉 error

, ¬h
)
∧
(
∀ h
〈σ, x〉 〈σ′, 〉 , h⇒ r σ′

)
The quantifications over rules are perhaps a little unusual. The first one
∀ h
〈σ, x〉 error goes over all rules that apply to the state 〈σ, x〉 and go to the error

state. The hypothesis h is bound by the quantifier. The second quantification
∀ h
〈σ, x〉 〈σ′ , 〉 is similar, except that it ranges only over rules that go to non-error

states. Both the hypothesis h and the store σ are bound by the quantifier. For
example, if statement x is assert q, then the first quantification is instantiated
only for rule (2.7) (on page 14) and the second quantification is instantiated only
for rule (2.6).

(5.2)

{p} assert q {r} = ∀σ, p σ⇒ (q σ ∧ (q σ⇒ r σ))

= ∀σ, p σ⇒ (q σ ∧ r σ)

= ∀σ,
(

p⇒ (q ∧ r)
)

σ

= |p⇒ (q ∧ r)|

For the assume statement the first quantifier over rules evaluates to > since no
rule for assume statements goes to the error state.

(5.3) {p} assume q {r} = |(p ∧ q)⇒ r|

The Hoare triple {p} assert q {r} holds when the predicate p ⇒ (q ∧ r) is
valid; the Hoare triple {p} assume q {r} holds when the predicate (p ∧ q)⇒ r
is valid; and the Hoare triple {p} v := e {r} holds when the predicate p ⇒
(v ← e) r is valid. There is an appealing similarity between the predicates
corresponding to assert and, respectively, assume.

5.1.2 Correctness of a Flowgraph

A program is correct when none of its executions goes wrong (see Definition 2 on
page 15). For flowgraphs we may use the same definition, since each execution
of a program corresponds to an execution of the associated flowgraph. Therefore,
one may check that each execution ends in a non-error state and conclude that
the flowchart is correct. The task is akin writing an exhaustive test suite. Unlike
automated testers, program verifiers rely on an alternative characterization of
correctness, first described by Floyd [75].

An annotation of a core Boogie flowchart associates two predicates to each
node x, a precondition ax and a postcondition bx. We say that an annotation
explains the flowchart when

70

1. the precondition a0 of the initial node is valid,

2. the triple {ax} x {bx} holds for all nodes x, and

3. the predicate bx ⇒ ay is valid for all edges x → y.

We will refer to these as conditions 1, 2, and 3. A flowgraph may have zero, one,
or more annotations that explain it.

Theorem 3. Annotations explain only correct Boogie flowgraphs.

Proof. Suppose a Boogie program is explained by preconditions ay and postcon-
ditions by. We can prove by induction on the length of executions that ay σy

holds whenever 〈σy, y〉 belongs to some execution. If y is the initial statement 0,
then ay σ holds because a0 is valid (see condition 1). Otherwise, 〈σ, y〉 comes
after some state 〈σx, x〉. There are multiple such predecessors possible, but for
all of them we know, by induction, that ax σx holds. The step 〈σx, x〉 〈σy, y〉
must be justified by rule (2.6) or by rule (2.8) (see page 14). In either case, the
hypothesis of the rule is satisfied, so we conclude from (5.1) that bx σy holds
(see condition 2). Hence, ax σx holds (see condition 3).

Because ax σx always holds, condition 2 implies, (5.1), that no rule leading
to the error state applies.

5.2 Predicate Transformers

We now discuss two methods for finding annotations. Both methods are com-
plete, in the sense that they find explaining annotations whenever the Boogie
flowgraph is correct.

The strongest postcondition method proceeds forwards: The precondition ax

is found before the postcondition bx and, when there is an edge x → y, the
postcondition bx is found before the precondition ay. The weakest precondition
method proceeds backwards: The postcondition bx is found before the precon-
dition ax and, when there is an edge x → y, the precondition ay is found before
the postcondition bx.

The strongest postcondition method always finds the strongest predicate
that could possibly explain the flowgraph; the weakest precondition method
always finds the weakest predicate that could possibly explain the program. We
say that predicate p is stronger than predicate q (and that predicate q is weaker
than predicate p) when the predicate p⇒ q is valid.

For the rest of this section it helps to think of predicates as sets of stores. The
predicate p ∧ q denotes the intersection set p ∩ q; the predicate p ∨ q denotes

71

the union set p ∪ q; the predicate ¬p denotes the complement set p̄; the pred-
icate p ⇒ q denotes the set p̄ ∪ q. The predicate p ⇒ q is valid when p ⊆ q.
Weakest means largest; strongest means smallest.

5.2.1 Dealing with Edges

In the strongest postcondition method, the precondition ay is calculated after
all postconditions bx of nodes x with edges x → y. For all nodes x we must
have bx ⇒ ay. The strongest predicate ay that is implied by all predicates bx is
their disjunction.

(5.4) ay ≡
∨

x→y
bx

The precondition of the initial node is not constrained by condition 3 (on flow-
graph edges) but by condition 1.

(5.5) a0 ≡ >

Note that (5.5) is not a special case of (5.4).
In the weakest precondition method, the postcondition bx is calculated after

all preconditions ay of nodes y with edges x → y. For all nodes y we must
have bx ⇒ ay. The weakest predicate bx that that implies all predicates ay is
their conjunction.

(5.6) bx ≡
∧

x→y
ay

The postconditions of nodes with no outgoing edge, which correspond to return
statements, are not constrained by condition 3. In fact they are not constrained
by any of the conditions 1, 2, and 3, so for them bx ≡ >, the weakest possible
predicate. Fortunately, that is what (5.6) reduces to for return nodes.

5.2.2 Dealing with Statements

Assumptions If the statement x is assume qx, then according to condition 2
the predicate

(5.7) (ax ∧ qx)⇒ bx

must be valid.
In the strongest postcondition method we must find the strongest predi-

cate bx, given the predicates ax and qx. Clearly,

(5.8) bx ≡ (ax ∧ qx).

72

qx bx

Figure 5.1: Weakest precondition of assume statements

In the weakest precondition method we must find the weakest predicate ax,
given the predicates qx and bx. In terms of sets, we must find the biggest set ax

such that its intersection with the set qx is included in the set bx.

(5.9) ax ≡ (qx ⇒ bx)

The situation is depicted in Figure 5.1.

Assertions If the statement x is assert qx, then according to condition 2 we see
that the predicate

(5.10) ax ⇒ (qx ∧ bx)

must be valid.
In the strongest postcondition method we must find the strongest predi-

cate bx, given the predicates ax and qx. No matter what predicate bx we choose,
the predicate in (5.10) is invalid unless

(5.11) ax ⇒ qx

is valid. If this is the case, then the strongest predicate bx that satisfies (5.10) is

(5.12) bx ≡ (ax ∧ qx).

In the weakest precondition method we must find the weakest predicate ax,
given predicates qx and bx.

(5.13) ax ≡ (qx ∧ bx)

Assignment If statement x is v := e, then according to condition 2 we see that
the predicate

(5.14) ax ⇒ (v← e) bx

must be valid.
In the strongest postcondition method we must find the strongest predi-

cate bx, given the predicate ax, the variable v, and the expression e. We rewrite
condition (5.14).

(5.15) ∀σ, ax σ⇒ bx ((v← e) σ)

73

Note that (v← e) σ = (v← e) σ′ does not imply σ = σ′. That is, there might be
multiple stores σ corresponding to the same right hand side in (5.15). Because
we want the set bx to be as small as possible we want bx σ to hold only if it
must hold, that is, only if there is some corresponding left hand side in (5.15)
that holds.

(5.16) bx σ = ∃σ′, a σ′ ∧
(
σ = (v← e) σ′

)
In the weakest precondition method we must find the weakest predicate ax,

given the variable v, the expression e, and the predicate bx. This is trivial.

(5.17) ax ≡ (v← e) bx

5.2.3 Summary

In the strongest postcondition method we compute

ay ≡
{
> if y is the initial statement∨

x→y bx otherwise
(5.18)

bx ≡
{

ax ∧ qx if x is assert/assume qx

λσ. ∃σ′, a σ′ ∧
(
σ = (v← e) σ′

)
if x is v := e

(5.19)

and we check the validity of

(5.20) vcsp ≡
∧

x is an
assertion

(ax ⇒ bx).

In the weakest precondition method we compute

bx ≡
∧

x→y
ay(5.21)

ax ≡

qx ⇒ bx if x is assume qx

qx ∧ bx if x is assert qx

(v← e) bx if x is v := e
(5.22)

and we check the validity of

(5.23) vcwp ≡ a0.

Equations (5.19) and (5.22) can be seen as defining the predicate trans-
former sp and, respectively, the predicate transformer wp. Both take two argu-
ments, a statement and a predicate, and return a predicate.

Example 6. Let us look again at the program in Figure 4.7 on page 51. The two
methods described above yield equivalent but structurally different VCs:

(5.24)

vcsp ≡
(
(>∧ (v0 = u) ∧ ¬even(v0) ∧ (v1 = v0 + 1))

∨ (>∧ (v0 = u) ∧ even(v0) ∧ (v1 = v0))
)

⇒ even(v1)

74

(5.25)

vcwp ≡(v0 = u)⇒(
(¬even(v0)⇒ (v1 = v0 + 1)⇒ (even(v1) ∧>))

∧ (even(v0)⇒ (v1 = v0)⇒ (even(v1) ∧>))
)

5.3 Replacing Assignments by Assumptions

After passivation all assignments v := e are transformed into assumptions
assume v = e. This section argues briefly why this transformation is sound
and complete. The key idea is that there is a one-to-one correspondence be-
tween the executions of the program without assignments and executions of
the program with assignments where the initial store is chosen so that all writes
are no-operations.

It is complete: If the program without assignments has an execution that goes
wrong then the program with assignments has an execution that goes wrong.
Say 〈σ, x0〉, 〈σ, x1〉, . . . , 〈σ, xn〉, error is an execution of the program without
assignments. If statement xk is assert/assume qk then qk σ holds. In particular,
if the statement corresponds to an assignment v := e then it is assume v = e,
which means that σ v = e σ. It is easy to see now that a similar execution that
goes wrong exists in the program with assignments, because σ = (v← e) σ.

The proof of the converse is very similar and we omit it. The idea is to take
an execution that goes wrong in the program with assignments and show that
the final store in this execution can serve as the (unique) store in an execution of
the assignment-free program.

The proofs above essentially rely on the existence of executions in which no
assignment changes the store. Such executions exist because the program is pas-
sive. The advantages of the assignment-free form are presented in Section 4.1.1.

5.4 Verification Condition Size

5.4.1 VCs with Sharing

Figure 5.2 shows (5.18), (5.19), and (5.20) as an algorithm. It is assumed that
the program contains only assert and assume statements. The call Predicate(x)
returns the predicate in statement x. The calls Or(ps), And(ps), and Implies(p, q)
build predicates out of simpler ones. They are builders of SMT terms, which
implement hash-consing as described in Section 3.6. Hence, the hash-table that
implements the set bs may use reference equality (see method Pre).

Example 7. The VC in (5.24) is represented by the SMT term in Figure 5.3.
Notice the sharing of a subtree. Enclosed in rectangles are expressions that

75

PRE(y) // memoized
1 if y is initial
2 return True()
3 bs := ∅ // collects all bx
4 for each predecessor x of y
5 insert Post(x) in the set bs
6 return Or(bs)

POST(x) // memoized
1 return And(Pre(x), Predicate(x))

VC()

1 vs := ∅ // collects local VCs
2 for each statement x that is an assertion
3 insert Implies(Pre(x), Predicate(x)) in the set vs
4 return And(vs)

Figure 5.2: VC computation using the strongest postcondition method

appear in the Boogie program (from Figure 4.7 on page 51). These are translated
from the Boogie AST representation to the SMT representation as explained
in Section 3.6. The circled nodes are created by the algorithm in Figure 5.2 by
calling the builders True, And, Or, and Implies.

Remark 10. FreeBoogie builds a slightly simpler SMT tree because builders carry
out simplifications. For example, the call And({p,>}) returns p.

Proposition 7. The algorithm in Figure 5.2 computes the VC in O(|V|+ |E|)
time. If the program contains no assertions then the lower bound Ω(|V|)
is attained.

Proof. Because of memoization the methods Pre and Post are called at most
once for each node. Inserting a term in the set bs takes O(1) time if the set is
implemented as a hashtable. The method Pre analyzes all the incoming edges of
the node it was called for, so in the worst case it looks once at each edge in the
flowgraph. If there are no assertions then the runtime is dominated by the loop
in Vc, which checks there are no assertions.

Note that the upper bound on the execution time would be slightly worse if
randomized algorithms (such as hashtables) are forbidden.

Proposition 8. The algorithm in Figure 5.2 computes a VC with size O(|V|+
|E|+ n), where n is the space needed to represent all the expressions that appear
in the program. If the program contains no assertions then the lower bound
Ω(1) is attained.

76

∧

⇒

∨

∧

∧

¬even(v0)

v1 = v0 + 1

∧

∧

∧

> v = u

even(v0)

v1 = v0

even(v1)

Figure 5.3: Data structure for the VC in (5.24)

Proof. Each execution of the method Pre creates one new node that contains
as many links to children as there are predecessors in the flowgraph. Each
execution of the method Post creates one new node with two children, one
of which is an expression from the program. If there are no assertions then
vcsp ≡ ⊥.

Remark 11. Results similar to Proposition 7 and Proposition 8 hold for the
analogous implementation of the weakest precondition method.

5.4.2 VCs without Sharing

The next step is to send the VC to a theorem prover. One way is to implement
the builder methods (like True, Or, . . .) in terms of calls to the prover API.
Another way is to communicate with the prover through the SMT language. In
the second approach, a data structure is built inside the VC generator, then it is
serialized as a string, and then the prover parses the string and builds its own
data structures. Hence, the second approach is slower and uses more memory.
Its main advantage is that multiple provers understand the SMT language. If
the VC is printed in the SMT language, then it could be used as a benchmark
for multiple provers. Of course, another advantage is that the backend of the
VC generator does not have to deal with multiple APIs, some of which might
not be for Java.

SMT terms cannot be printed recursively in the naive way, for this may
result in strings that are exponentially large in the size of the data structure.
Extra work is needed to identify the shared parts and to eliminate the sharing.
Finding which parts are shared is useful also for deciding how to split the VC
into multiple queries, in case it is too big.

77

Figure 5.4 shows a simplified version of the algorithm used in FreeBoo-
gie. The method EliminateSharing transforms an SMT term, which represents a
predicate, into an equivalent one that has less sharing. The algorithm plucks
sub-predicates repeatedly. Figure 5.5 illustrates the plucking process: It re-
places the predicate (v ← q) p by the predicate (v = q) ⇒ p. Each plucking
preserves validity.

(5.26) |(v← q) p| = |(v = q)⇒ p|

Suppose (v← q) p is valid and pick a store σ that satisfies the predicate v = q.

(v← q) σ u(5.27)

=

{
σ u if u is v
q σ if u is not v

definition of (v← q)(5.28)

= σ u we assumed σ v = q σ(5.29)

So (v← q) σ = σ.

(v← q) p σ we assume |(v← q) p|(5.30)

= p ((v← q) σ) definition of (v← q)(5.31)

= p σ because (v← q) σ = σ(5.32)

We have proved

(5.33) |(v← q) p| ⇒ |(v = q)⇒ p|

The key to prove the other implication is to note that (v← q) (v = q) is valid.
Therefore, plucking preserves validity, even though the predicates (v ← q) p
and (v = q)⇒ p do not always describe the same set of stores. Note also that
there is no need to constrain the predicate q to be independent of variable v,
although this is the case in the unsharing algorithm.

Example 8. If p ≡ (v⇒ p2) and q ≡ p1 then the claim is

(5.34) |p1 ⇒ p2| = |(v = p1)⇒ (v⇒ p2)|.

The method Unshare collects the definitions for all fresh variables and the
method EliminateSharing uses them to form the result. In other words we need
to prove

(5.35)
∣∣(v1 ← q1) ((v2 ← q2) p)

∣∣ = ∣∣((v1 = q1) ∧ (v2 = q2)
)
⇒ p

∣∣
78

which generalizes easily to more fresh variables. Here is a proof.∣∣(v1 ← q1) ((v2 ← q2) p)
∣∣(5.36)

=
∣∣(v1 = q1)⇒ ((v2 ← q2) p)

∣∣ by (5.26)(5.37)

=
∣∣(v2 ← q2) ((v1 = q1)⇒ p)

∣∣ see below(5.38)

=
∣∣(v2 = q2)⇒ (v1 = q1)⇒ p

∣∣ by (5.26)(5.39)

=
∣∣((v1 = q1) ∧ (v2 = q2)

)
⇒ p

∣∣ boolean algebra(5.40)

The second step of this proof holds only if the predicate q1 does not depend
on the variable v2, which is true if the variable v2 does not syntactically appear
within the predicate q1. With n variables, the condition is that predicate qi does
not contain variable vj if i < j. It is always possible to find such an ordering
since variables, which are created on line 10 of the method Unshare, may only
syntactically contain in their definition variables that were created earlier.

Apart from being correct, the algorithm in Figure 5.4 is also good because it
does not use much time or space.

The method CountParents is executed once for each node in the input (except
for line 1, which is executed once for each edge in the input, and line 2, for
which a similar bound holds). Because it is memoized, the method Unshare is
also executed once for each node in the input. For each execution, it creates at
most three new nodes (lines 6, 10, and 11). The method PrintSize is executed
at most once for each new node. Therefore the algorithm runs in linear time
and creates at most three times as many nodes as there are in the input. (Some
of the new nodes ‘created’ on line 6 of the method Unshare are taken from the
hash-consing cache.)

The constant k on line 9 of the method Unshare controls how much plucking
is done. A big value reduces the number of plucks; a small value increases the
number of plucks. The value ps× pc estimates the length of printing without
plucking, and ps + pc estimates the length of printing with plucking. In par-
ticular, if we pick k = −1, then plucking is done if ps > 1 and pc > 1. In this
case, only nodes without children (leaves) may have multiple parents in the
result. The print size of such a dag is linear in its size, which in turn is linear
in the size of the input. In other words, if k = −1 then the printing size of
EliminateSharing(t) is linear in the size of t.

We have shown the following.

Theorem 4. The call EliminateSharing(t) returns in O(n) time and uses O(n)
space, where n is the size of the dag t. The resulting dag represents a predicate
that is valid if and only if the predicate represented by the dag t is valid.
Moreover, when k = −1, the print size of the result is O(n).

79

1 global newDefinitions // set of (v ⇐⇒ t)
2 global parentCount // term t has parentCount[t] parents
3 global seen

ELIMINATESHARING(t)
1 clear globals
2 CountParents(t)
3 t := Unshare(t)
4 return Implies(And(newDefinitions), t)

COUNTPARENTS(t)
1 if t ∈ seen
2 return
3 insert t in the set seen
4 for each child c of t
5 increment parentCount[c]
6 CountParents(c)

PRINTSIZE(t) // memoized
1 s := 1
2 for each child c of t
3 s := s + PrintSize(c)
4 return s

UNSHARE(t) // memoized
1 if t or one of its children is not a formula
2 return t
3 newChildren := empty list
4 for each child c of t
5 append Unshare(c) to newChildren
6 t′ := mk(type(t), newChildren)
7 ps := PrintSize(t′)
8 pc := parentCount[t]
9 if ps× pc− (ps + pc) > k // k is a constant

10 v := fresh variable
11 insert Iff (v, t′) in the set newDefinitions
12 t′ := v
13 return t′

Figure 5.4: (Almost) eliminating sharing

q q

v

=
· · · · · ·

Figure 5.5: Plucking

80

The implementation in FreeBoogie is slightly more complicated, but pro-
duces queries that the theorem prover Simplify answers using 30% less time
than it needs for the queries produced by the algorithm described so far. This
reduction in time was measured on the benchmark used in Chapter 7.

Look again at Example 8 on page 78. Equation (5.34) is a special case of the
“proof by indirect inequality law:”

(5.41) |p1 ⇒ p2| = |(v⇒ p1)⇒ (v⇒ p2)|.

It turns out that

(5.42) |(v← q) p| = |(v⇒ q)⇒ p|

holds when the predicate p is monotonic in the variable v

(5.43)
∣∣(q1 ⇒ q2)⇒

(
(v← q2) p⇒ (v← q1) p

)∣∣
and also

(5.44) |(v← q) p| = |(q⇒ v)⇒ p|

holds when

(5.45)
∣∣(q1 ⇒ q2)⇒

(
(v← q1) p⇒ (v← q2) p

)∣∣.
FreeBoogie detects monotonicity by examining a syntactic condition. A

predicate p satisfies (5.45) if variable v syntactically occurs only in positive
positions. Roughly speaking, a position is positive if it is under an even number
of negations.

5.5 Experiments

Figure 5.6 shows the ratios between the proving times required for weakest
precondition and strongest postcondition. The tests were ran using the Z3 v1.2
prover on a single core of a dual-core AMD Opteron 2218 (2× 2.6 GHz) with
16 GiB of DDR2-667 RAM. Both methods perform similarly, as can be seen by
the relative symmetry of the graph. Weakest precondition does mildly better
however, as evidenced by the slight shift to the right. It is interesting to note
that in over 40% of the test cases the time ratio between the worse method and
the better method is > 2. These are the cases outside of the shaded area.

5.6 Conclusions

To reason about core Boogie programs we can use operational semantics (Chap-
ter 2), Hoare logic (Section 5.1), and predicate transformers (Section 5.2). Hoare

81

ln sp time
wp time

cases

50
100
150
200
250

-6 -4 -2 0 2 4 6

Figure 5.6: Experimental comparison of proving times

logic plays a central role, as it is easy to relate both to operational semantics and
to predicate transformers. Hoare logic is also useful to characterize correctness
of Boogie programs in a very intuitive way (Theorem 3).

The weakest precondition predicate transformer and the strongest postcon-
dition predicate transformer power two different methods for generating VCs.
The resulting VCs are equivalent (in the sense that one is valid if and only if the
other is), but may have very different structures. The structure influences the
theorem proving time in unexpected ways and it turns out to be worth trying
both approaches in parallel if two processing units are available (Section 5.5).

The generated VC must be sent to a theorem prover. There is a simple
and efficient algorithm for translating the in-memory representation of the
VC into a standard language like SMT (Section 5.4). However, the in-memory
representation is sometimes already too large.

Problem 7. Exploit the structure of vcwp and vcsp in order to split big VCs into
smaller ones.

The VC produced by the strongest postcondition method seems to be es-
pecially amenable to splitting since it already has the proper structure—a big
conjunction. The main problem is how to best handle the shared parts of
the conjuncts.

5.7 Related Work

ESC/Java can use both the strongest postcondition [73] and the weakest pre-
condition method [117], but not for arbitrary acyclic flowgraphs. Note that [73]
describes a method analogous to our strongest postcondition method but only
uses the term “outcome predicate”. Boogie uses only the weakest precondition
method and can treat unstructured programs [25].

82

Strongest postcondition was discussed before in the context of a simple
language similar to ours in relation to predicate abstraction [72] (but only for
structured programs) and in relation to proof reuse [84] (but not shown sound).
Tools that do abstract interpretation [55], software model checkers, and, in
general, tools using some form of symbolic execution [106] tend to be based on
the strongest postcondition.

83

84

Chapter 6

Edit and Verify

“No battle plan survives contact with the enemy.”

— Helmuth Karl Bernhard Graf von Moltke

Previous chapters cover various stages of FreeBoogie’s pipeline (Section 3.2).
The problem addressed by this chapter—speeding up the verification condition
generation by exploiting the incremental nature of software development and
verification—requires us to look again at the pipeline as a whole. The main
contributions are (1) a proof technique for algorithms that simplify a VC by
using an old VC as a reference, (2) a heuristic for detecting common parts of two
expression trees, such as two VCs, and (3) a prototype implementation, which
is part of the SMT solver FX7.

6.1 Motivation

Humans prefer swift tools: A response time & 0.1 seconds is noticeable, and a
response time & 8 seconds entices context switches [94]. For example, during a
long compilation a programmer might start browsing the Internet. The context
switch from programming to browsing and back induces a significant loss
of productivity.

Three techniques are especially useful in improving the performance of
compilers. The first technique, background compilation, makes the perceived
response time smaller than the processing time. The second technique, modular
compilation, makes sure that time is spent mostly on the modified modules. A
module is typically a file or a class. Modules still need to be linked, which is
done by a second (faster) step for languages like C and by the virtual machine
at run-time for languages like Java. The third technique, incremental compila-
tion, is similar to modular compilation, but with a finer granularity. Typically
individual methods are recompiled separately.

85

Eclipse uses all three techniques. Background compilation is implemented
in most IDEs; modular compilation is implemented in most compilers; incre-
mental compilation is not yet implemented in some widely used compilers,
such as GCC.

A core Boogie program corresponds to a procedure implementation in full
Boogie. The correctness of a Boogie procedure implementation depends only
on its preconditions and postconditions, and on those of the called procedures.
It is easy and natural to verify a Boogie program one procedure implementation
at a time. If we would mirror the compiler terminology, then we would say that
Boogie was designed for incremental verification. However, the term ‘modular
verification’ is more often used.

Java was designed to be compiled one class at a time; Boogie was designed to
be verified one procedure implementation at a time. Java now has incremental
compilers, which compile parts of a class separately. Is it possible to verify
only parts of a Boogie procedure implementation? Could this improve the
performance of a program verifier? These are the questions that motivate the
investigations of this chapter.

6.2 Overview

Figure 6.1 shows 16 annotated programs, one for each possible choice on
whether to include each of the four shaded lines. The program that includes
no shaded line is the original program. Inserting one shaded line represents an
edit operation. In general, an edit operation is any change from a type-correct
Boogie program to another type-correct Boogie program. Programmers and
IDEs invoke program verifiers periodically. For each invocation, the frontend
transforms Java into Boogie, the backend transforms Boogie into a VC, and the
theorem prover tries to determine if the VC is valid. Between two subsequent
invocations (on type-correct programs) there is usually not much change, es-
pecially when the program verifier is invoked continuously in the background
by an IDE. Moreover, many transformations are local. Therefore, much work is
duplicated. As an example, consider the following scenario: A program verifier
is run on the original program of Figure 6.1, then line 1 is added, and then the
program verifier is run again. By adding line 1 nothing essential changes, so the
first and the second run of the program verifier take the same amount of time.
It should be possible to do much better.

FreeBoogie consists almost entirely of evaluators, some of which are trans-
formers (see Section 3.3). The input of an evaluator is a Boogie AST. Because
Boogie ASTs are immutable, they can be used as keys in a map (dictionary)
data structure. That is why the class Evaluator, the base class of all evaluators,

86

1 // comment
2 abstract class Day {
3 public abstract int getMonth();
4 ensures 1 <= result && result <= 12;
5

6 public abstract int getYear();
7 ensures 1970 <= result;
8 ensures result <= 2038;
9

10 public abstract int getDay();
11 ensures 1 <= result && result <= 31;
12

13 public int dayOfYear()
14 ensures 1 <= result;
15 ensures result <= 366;
16 {
17 int offset = 0;
18 if (getMonth() > 1) offset += 31;
19 if (getMonth() > 2) offset += 28;
20 if (getMonth() > 3) offset += 31;
21 if (getMonth() > 4) offset += 30;
22 if (getMonth() > 5) offset += 31;
23 if (getMonth() > 6) offset += 30;
24 if (getMonth() > 7) offset += 31;
25 if (getMonth() > 8) offset += 31;
26 if (getMonth() > 9) offset += 30;
27 if (getMonth() > 10) offset += 31;
28 if (getMonth() > 11) offset += 30;
29 boolean isLeap = getYear() % 4 == 0 &&
30 (getYear() % 100 != 0 || getYear() % 400 == 0);
31 assert offset <= 334;
32 if (isLeap && getMonth() > 2) offset++;
33 return offset + getDay();
34 }
35 }

Figure 6.1: Typical evolution of annotated Java code

87

can cache the results of all evaluations done in FreeBoogie. For example, if the
type-checker is invoked twice on the AST of a procedure implementation, then
the second invocation returns quickly after one hashtable lookup.

Two problems remain. First, if the input file is parsed twice, then two distinct
ASTs are created by the parser, thus rendering the caches unusable. Second,
even if the VC is obtained faster, the component that takes too much time is
usually the prover. Let us consider these problems in turn.

To not produce the same AST twice when line 1 is inserted we must not
parse the input file, in its entirety, twice. We could either re-parse only the parts
that change or we could not parse at all. Both solutions work. The easiest and
fastest way to detect what parts changed is to integrate FreeBoogie’s parser in a
text editor, such as the text editor of Eclipse. Parsing is unnecessary when the
frontend uses FreeBoogie’s API.

To reduce the prover time without re-engineering it, we must simplify the
VC. For example, if the VC turns out to be the same as a previous one, for which
the prover was called, then there is nothing more to do. This is the case for
inserting line 1. In particular, if the VC before change is valid, then the VC after
change simplifies to the predicate >. Any prover should return quickly when
the query is the predicate >.

6.3 Simplifying SMT Formulas

We want to simplify a VC, given a similar VC known to be valid.

Problem 8. Find a predicate transformer prune such that

|¬p| ⇒
(
|¬q| = |¬(prune p q)|

)
for all predicates p and q.

Here ¬p is the VC known to be valid, ¬q is the current VC, and ¬(prune p q)
is the simplified form of the current VC. It is not essential to work with the
negated form of VCs, but it is closer to the implementation. SMT solvers answer
the validity query ¬p by reducing it to the satisfiability query p.

Example 9. For the program var y:int; assume (forall x:int :: even(x) || odd(x));
assume !odd(y); assert even(x); we have

(6.1) ¬vcsp ≡
(
∀x, even(x) ∨ odd(x)

)
∧ ¬odd(y) ∧ ¬even(y)

The prover sees that

¬vcsp(6.2)

⇒
(
even(y) ∨ odd(y)

)
∧ ¬odd(y) ∧ ¬even(y) by setting x := y(6.3)

= ⊥(6.4)

88

Table 6.1: Example of simplification

Initial Modified Simplified

assume p1
assert p2

assume p1
assert p2
assert p3

assume p1
assume p2
assert p3

vcsp p1 ⇒ p2 (p1 ⇒ p2) ∧
(
(p1 ∧ p2)⇒ p3

)
(p1 ∧ p2)⇒ p3

¬vcsp p1 ∧ ¬p2 (p1 ∧ ¬p2) ∨ (p1 ∧ p2 ∧ ¬p3) p1 ∧ p2 ∧ ¬p3

Remark 12. We also want the satisfiability query prune p q to be easier to handle
than the query q, by typical SMT solvers. Alas, this requirement is hard to
formalize. The size of the predicate representation is one possible proxy: It
should be as small as possible.

Example 10. If we restrict p ≡ q in Problem 8, then (prune p q) ≡ ⊥ is a
good solution.

Example 11. Table 6.1 shows how prune could simplify a particular VC. To make
this example more concrete, the reader might wish to plug in pk ≡ (v > −k).
Note that p1 ⇒ p3 is a smaller feasible simplified VC, but likely harder to prove
than (p1 ∧ p2)⇒ p3.

To characterize a wide class of predicate transformers that satisfy the require-
ments of Problem 8, it helps to introduce the notion of interpolant.

Definition 26 (interpolant). We say that predicate r is an interpolant of predi-
cates p and q when both p⇒ r and r ⇒ q hold.

Remark 13. In alternative definitions, predicate r is said to be an interpolant of
predicates ¬p and q, and it is constrained to contain only symbols that appear
in both predicates p and q.

Theorem 5. If predicate r is an interpolant of predicates ¬p ∧ q and q, then
|¬p| ⇒

(
|¬q| = |¬r|

)
.

Proof. We will need three simple facts about predicates, which follow from (2.27)
on page 16.∣∣a = b

∣∣⇒ (
|a| = |b|

)
(6.5) (

|a| ∧ |b|
)
=
∣∣a ∧ b

∣∣(6.6) (
|a| ∧ |a⇒ b|

)
⇒
∣∣b∣∣(6.7)

The hypotheses are∣∣(¬p ∧ q)⇒ r
∣∣(6.8)

=
∣∣¬p⇒ (q⇒ r)

∣∣(6.9)

89

and

∣∣r ⇒ q
∣∣.(6.10)

Now we calculate.

|¬q| = |¬r|(6.11)

⇐ |¬q = ¬r| by (6.5)(6.12)

=
∣∣(q⇒ r) ∧ (r ⇒ q)

∣∣(6.13)

= |q⇒ r| ∧ |r ⇒ q| by (6.6)(6.14)

= |q⇒ r| by (6.10)(6.15)

⇐ |¬p| by (6.9) and (6.7)(6.16)

Theorem 5 tells us that any algorithm for computing interpolants is poten-
tially useful for speeding up incremental verification. This is significant because
interpolants have other uses [99, 131, 103, 132]. It is interesting, for example,
that any technique developed for inferring loop invariants is potentially useful
for speeding up incremental verification.

6.3.1 Pruning of Predicates

Problem 8 has the simple solution prune p q ≡ q, which means “forget the old
VC.” Better solutions explore the syntactic structure of p and q. Remember
that the strongest postcondition method produces a conjunction of implica-
tions (see (5.20) on page 74). In this case, the following equations work well
in practice.

prune (p ∨ r) (r ∧ q) ≡ ⊥(6.17)

prune
(
(p1 ∧ r1) ∨ . . . ∨ (pm ∧ rm)

) (
(r1 ∧ . . . ∧ rm) ∧ (q1 ∧ . . . ∧ qn)

)
≡ (r1 ∧ . . . ∧ rm)

∧ (prune (p1 ∨ . . . ∨ pm) q1) ∧ . . . ∧ (prune (p1 ∨ . . . ∨ pm) qn)

(6.18)

prune p (q1 ∨ . . . ∨ qn) ≡ (prune p q1) ∨ . . . ∨ (prune p qn)(6.19)

prune p q ≡ q(6.20)

Algorithms use these equations as left-to-right rewrite rules. Roughly, they are
tried in order, but (6.18) and (6.19) are skipped when they reduce to identity.
For example, (6.19) is applied only if n 6= 1.

90

Example 12. The insertion of an assertion, which is illustrated in Table 6.1, is
handled as follows.

prune ¬(p1 ⇒ p2) ¬
(
(p1 ⇒ p2) ∧ ((p1 ∧ p2)⇒ p3)

)
(6.21)

≡ prune (p1 ∧ ¬p2)
(
(p1 ∧ p2) ∨ (p1 ∧ p2 ∧ ¬p3)

)
(6.22)

≡
(
prune (p1 ∧ ¬p2) (p1 ∧ ¬p2)

)
∨
(
prune (p1 ∧ ¬p2) (p1 ∧ p2 ∧ ¬p3)

) by (6.19)(6.23)

≡ prune (p1 ∧ ¬p2) (p1 ∧ p2 ∧ ¬p3) by (6.17)(6.24)

≡ p1 ∧
(
prune ¬p2 (p2 ∧ ¬p3)

)
by (6.18)(6.25)

≡ p1 ∧ p2 ∧ ¬p3 by (6.20)(6.26)

≡ ¬
(
(p1 ∧ p2)⇒ p3

)
(6.27)

Step (6.25) is useless, but (6.18) is useful in other examples.

Example 13. Consider now the case of a program with two assertions out of
which one is modified.

prune ¬
(
(p1 ⇒ q1) ∧ (p2 ⇒ q2 ∧ q3)

)
¬
(
(p1 ⇒ q1) ∧ (p2 ⇒ q2 ∧ q4)

)(6.28)

≡ prune
(
(p1 ∧ ¬q1) ∨ (p2 ∧ (¬q2 ∨ ¬q3))

)(
(p1 ∧ ¬q1) ∨ (p2 ∧ (¬q2 ∨ ¬q4))

)(6.29)

≡
(

prune
(
(p1 ∧ ¬q1) ∨ (p2 ∧ (¬q2 ∨ ¬q3))

)
(p1 ∧ ¬q1)

)
∨
(

prune
(
(p1 ∧ ¬q1) ∨ (p2 ∧ (¬q2 ∨ ¬q3))

)
(p2 ∧ (¬q2 ∨ ¬q4))

) by (6.19)(6.30)

≡ prune
(
(p1 ∧ ¬q1) ∨ (p2 ∧ (¬q2 ∨ ¬q3))

)(
p2 ∧ (¬q2 ∨ ¬q4)

) by (6.17)(6.31)

≡ p2 ∧
(

prune
(
(p1 ∧ ¬q1) ∨ ¬q2 ∨ ¬q3

) (
¬q2 ∨ ¬q4

))
by (6.18)(6.32)

≡ p2 ∧
((

prune
(
(p1 ∧ ¬q1) ∨ ¬q2 ∨ ¬q3

)
¬q2

)
∨
(

prune
(
(p1 ∧ ¬q1) ∨ ¬q2 ∨ ¬q3

)
¬q4

)) by (6.19)(6.33)

≡ p2 ∧
(

prune
(
(p1 ∧ ¬q1) ∨ ¬q2 ∨ ¬q3

)
¬q4

)
by (6.17)(6.34)

≡ p2 ∧ ¬q4 by (6.20)(6.35)

≡ ¬(p2 ⇒ q4)(6.36)

In this calculation (6.18) plays an essential role.

For the proof that (6.17)–(6.20) solve Problem 8 it is convenient to introduce
some shorthand notations. The range of i is implicitly 1. . m and (◦i, pi) stands

91

for p1 ◦ · · · ◦ pm; similarly, the range of j is implicitly 1. . n and (◦j, pj) stands
for p1 ◦ · · · ◦ pn. Equations (6.18) and (6.19) become shorter.

prune (∨i, pi ∧ ri) ((∧i, ri) ∧ (∧j, qj))

≡ (∧i, ri) ∧ (∧j, prune (∨i, pi) qj)
(6.37)

prune p (∨j, qj) ≡ (∨j, prune p qj)(6.38)

Lemma 2. The predicate prune p q given by (6.17)–(6.20) is weaker than the
predicate ¬p ∧ q.

(6.39) |(¬p ∧ q)⇒ (prune p q)|

Proof. The proof is by induction on the total size of the two arguments.

Branch (6.17):

¬(p ∨ r) ∧ (r ∧ q)(6.40)

= ⊥(6.41)

⇒ prune (p ∨ r) (r ∧ q)(6.42)

Branch (6.18) is more interesting:

¬(∨i, pi ∧ ri) ∧ (∧i, ri) ∧ (∧j, qj)(6.43)

⇒ (∧i, ri) ∧ ¬(∨i, pi) ∧ (∧j, qj)(6.44)

= (∧i, ri) ∧ (∧j, ¬(∨i, pi) ∧ qj)(6.45)

⇒ (∧i, ri) ∧ (∧j, prune (∨i, pi) qj) by induction(6.46)

= prune (∨i, pi ∧ ri) ((∧i, ri) ∧ (∧j, qj)) by (6.37)(6.47)

Branch (6.19):

¬p ∧ (∨j, qj)(6.48)

= (∨j, ¬p ∧ qj)(6.49)

⇒ (∨j, prune p qj) by induction(6.50)

= prune p (∨j, qj) by (6.38)(6.51)

Branch (6.20) is immediate.

Lemma 3. The predicate prune p q given by (6.17)–(6.20) is stronger than the
predicate q.

(6.52) |(prune p q)⇒ q|

92

Proof. The proof is by induction on the total size of the two arguments.

Branch (6.17):

prune (p ∨ r) (r ∧ q)(6.53)

= ⊥ by (6.17)(6.54)

⇒ p ∧ r(6.55)

Branch (6.18):

prune (∨i, pi ∧ ri)
(
(∧i, ri) ∧ (∧j, qj)

)
(6.56)

= (∧i, ri) ∧ (∧j, prune (∨i, pi) qj) by (6.37)(6.57)

⇒ (∧i, ri) ∧ (∧j, qj) by induction(6.58)

Branch (6.19):

prune p (∨j, qj)(6.59)

= (∨j, prune p qj) by (6.38)(6.60)

⇒ (∨j, qj) by induction(6.61)

Branch (6.20) is immediate.

Theorem 6. The predicate transformer prune defined by (6.17)–(6.18) solves
Problem 8 on page 88.

Proof. Immediate from Lemmas 2 and 3 and Theorem 5.

6.3.2 Algorithm

To analyze the algorithm implied by (6.17)–(6.20) we need a more precise de-
scription; to give a more precise description it helps to define a few basic
operations. We assume that SMT terms are dags. Given a term t we may ask
for its label Label(t) and for the list Children(t) of its children. Possible labels
include ∧ and ∨. Given a set T of terms, we may obtain a term And(t) and a
term Or(t) representing the conjunction and, respectively, the disjunction of
T’s elements. Also, False() returns a representation of ⊥. We assume that all
SMT terms are created using hash-consing, including those returned by And(·),
Or(·), and False(). In particular, False() returns the same reference every time.
Moreover, we assume that the hash-consing mechanism is aware that ∧ and ∨
are commutative: And(S) and And(T) return the same reference when the sets
S and T are equal; similarly for Or(·). Instead of relying on the hash-consing
mechanism to handle associativity, we treat it explicitly using the basic operation

93

PRUNE(p, q) // memoized
1 q∨ := Flatten(∨, q) // {q1, . . . , qn} in (6.19)
2 q∧ := Flatten(∧, q)
3 p∨ := Flatten(∨, p)
4 p∨∧ := {Flatten(∧, u) | u ∈ p∨}
5 if p∨ ∩ q∧ 6= ∅ // apply (6.17)
6 return False()
7 r := ∪{u ∩ q∧ | u ∈ p∨∧} // {r1, . . . , rm} in (6.18)
8 if r 6= ∅ // apply (6.18)
9 p′ := Or({And(u− r) | u ∈ p∨∧}) // p1 ∨ . . . ∨ pm in (6.18)

10 return And(r ∪ {Prune(p′, u) | u ∈ q∧ − r})
11 if |q∨| > 1 // apply (6.19)
12 return Or({Prune(p, u) | u ∈ q∨})
13 return q // apply (6.20)

Figure 6.2: Algorithm for pruning SMT trees

Flatten(·, ·).

FLATTEN(op, t) // memoized
1 if Label(t) 6= op
2 return {t}
3 else
4 return

⋃{Flatten(op, u) | u ∈ Children(t)}

(This approach leads to fewer special cases, essentially because we can treat any
term t as And({t}) or as Or({t}), without being explicit about it.) The last line of
Flatten uses somewhat non-standard notations for set operations. It is important
to understand what they mean and what is their run-time overhead. An easy
way to do so is to show a possible implementation in Java. The comprehension
{e(u) | u ∈ s} stands for the call mapE(s), where mapE is defined as follows.

1 static HashSet<T> mapE(Iterable<T> p) {
2 HashSet<T> r = new HashSet<T>();
3 for (T u : S) r.add(e(u));
4 return r;
5 }

Note that the argument may be a list or a set. Here e(u) is some expression not
involving side-effects. Because sets are represented with HashSets, insertion
takes constant time. Similarly, ∪s stands for the call union(s), where union is
defined as follows.

1 static HashSet<T> union(HashSet<HashSet<T>> s) {
2 HashSet<T> r = new HashSet<T>();
3 for (HashSet<T> u : s) for (T v : u) r.add(v);
4 return r;
5 }

It is now easy to convert the algorithm in Figure 6.2 into a Java program; it
is yet unclear for how long the program will run.

94

Proposition 9. In the worst case, the algorithm in Figure 6.2 takes at least
exponential time, when the size of the input is defined to be the space occupied
by the representation of predicates p and q.

Proof. Consider the predicates p0, . . . , pn defined on variables u1, . . . , un and v1,
. . . , vn as follows.

p0 ≡ (u1 ∧ . . . ∧ un) ∨ (v1 ∧ . . . ∧ vn)(6.62)

pk+1 ≡ (uk+1 ∧ pk) ∨ (pk ∧ vk+1) for k ∈ [0. . n)(6.63)

These formulas describe a dag in which pk is shared by the two disjuncts of pk+1.
The dag has 3(n + 1) nodes for operators, 2n nodes for variables, 2 + 2n edges
for predicate p0, and 6n edges for the other predicates. The total size of the
input is 13n + 5.

The algorithm will construct extra predicates that have a shape similar to
predicate p0, but lack some variables at the tail of the conjuncts.

(6.64) qk,S = (∧i ∈ [1. . k] ∪ S, ui) ∨ (∧i ∈ [1. . n]− S, vi)

for k ∈ [1. . n] and S ⊆ (k. . n]

In particular, qn,∅ is p0. The call Prune(p0, pn) will trigger the execution of
the body of method Prune with arguments (qk,S, pk) for all k ∈ [0. . n] and
S ⊆ (k. . n].

This can be seen by induction. When k = n the set S must be empty and
the arguments correspond to the initial call. When k ∈ [0. . n) we have the
following call tree, for all S ⊆ (k + 1. . n].

Prune(qk+1,S, pk+1) takes branch (6.19)(6.65)

Prune(qk+1,S, uk+1 ∧ pk) takes branch (6.18)(6.66)

Prune(qk,S, pk)(6.67)

Prune(qk+1,S, pk ∧ vk+1) takes branch (6.18)(6.68)

Prune(qk,S∪{k+1}, pk)(6.69)

Hence, Prune is recursively called with arguments (qk,S, pk) by the previous call
with arguments (qk+1,S−{k+1}, pk+1).

Since for each k ∈ [0. . n] there are 2n−k sets S, the body of method Prune
is executed at least 2n+1 − 1 times, which is exponential in the size of the
input. Because predicates qk,S are newly created, the auxiliary space used by
the algorithm is also at least exponential.

The proof relies on sharing in the second argument of Prune: If (uk+1 ∧ pk)∨
(pk ∧ vk+1) would be simplified to pk ∧ (uk+1 ∨ vk+1), then the run-time would
not be exponential.

95

Proposition 10. In the worst case, the algorithm in Figure 6.2 takes at most
linear time, when the size of the input is defined to be the number of paths
starting at the root of dag q.

Proof. The body of Prune(p, q) recursively calls Prune(p′, q′) only if there is a
path from q to q′.

The pruning algorithm works when predicates are represented by dags, but
is guaranteed to be efficient only if the dags have little sharing.

6.4 Correspondence between Trees

Experiments showed that the algorithm of Figure 6.2 is useless by itself, because
the SMT dags that represent the predicates p and q seldom share much. In
particular, if ESC/Java is used to produce a VC from the code in Figure 6.1 (on
page 87) with and without the comment line 1, then there is almost no sharing,
despite hash-consing. The problem will still exist if instead of ESC/Java we will
use FreeBoogie with a Java frontend.

The issue is better understood if we take a step back and look at the big
picture. A frontend transforms the code in Figure 6.1 into a Boogie program;
a VC generator transforms the Boogie program into an SMT query; an SMT
solver answers the query. The interfaces between these software components
are standardized at the language level—multiple static verifiers understand
the Boogie language and multiple provers understand the SMT language. But,
of course, information must flow in the other direction too, because the user
expects to see a result.

How do we easily substitute an SMT solver for another if they report results
in different ways? And how do we substitute a VC generator for another
if they report results in different ways? Leino et al. [120] describe an elegant
solution. The key insight is that no matter how an SMT solver presents a counter-
example, it probably includes a set of identifiers. Similarly, no matter how a
VC generator reports errors, it probably includes a set of identifiers. Therefore,
extra information, like location, can be recovered from ornate identifiers. For
example, ESC/Java decorates identifiers by their location, so that it knows to
which occurrence of a certain identifier in the Java code the counter-example
refers to. (Note that, since different versions are needed for passivation anyway,
they can be obtained by attaching strings that are useful for error reporting too,
instead of 1, 2, 3, . . .)

If the frontend that produces Boogie from the example in Figure 6.1 decorates
identifiers with location information, then inserting a comment on line 1 results

96

in a Boogie program with completely different identifiers. Almost all compar-
isons done by the algorithm of Figure 6.2 return false, and no simplification
is done.

6.4.1 Matching SMT dags

To solve this problem, FX7 improves the sharing in SMT dags before pruning.
The nodes in an SMT dag are labeled with a string. Some labels, such as “and”,
“or”, and “41”, have a special meaning for the prover while others, such as
those representing variables in predicates, are uninterpreted. The uninterpreted
labels are also called identifiers, because the only semantic information they
carry follows from whether two of them are equal as strings or not. It is safe to
rename identifiers as long as their semantic information is preserved. To explain
formally why this is the case we would need to dig more into the structure of
predicates. However, there is an important special case that is easy to prove
already. Note that

(6.70) |¬p| ⇒ |¬((v← e) p)|

for any substitution (v← e), because, for an arbitrary store σ,

¬ ((v← e) p) σ(6.71)

= ¬((v← e) p σ)(6.72)

= ¬(p ((v← e) σ))(6.73)

= (¬p) ((v← e) σ)(6.74)

⇐ |¬p|.(6.75)

In other words, the correctness of pruning is not affected if the variables in
predicate p are renamed beforehand, no matter what renaming is done.

The heuristic used by FX7 improves sharing by renaming only variables, and
is easier to understand in a slightly more abstract setting.

Problem 9. Given are two unordered rooted dags p and q. Their nodes and
edges are labeled with strings. Find a one-to-one correspondence between some
leaves of the dag p and some leaves of the dag q.

Remark 14. Such labeled dags may represent both SMT dags and Boogie ASTs.
Nodes could be labeled with strings such as “not”, “or”, and “for all”. The
edges below “not” and “or” would be labeled by the empty string; The edges
below “for all” would be labeled with “bound variable” and, respectively,
“body”. However, the exact encoding is not important. What is important is
that dags with labels on nodes and edges can easily encode both SMT dags and
Boogie ASTs.

97

∧

∧

∧

∨

∨

∨

u1

u2

u4u3

(a) dag p

∧

∧
∨

∨
v3

v2v1

(b) dag q

u1

u2

u3

u4

v1

v2

v3

(c) bipartite
graph

Figure 6.3: Dags and bipartite graph for Example 14

Problem 9 is an incompletely specified optimization problem: It is clear what
a feasible solution is, but it is not clear which solutions are better and which are
worse. A cost function that evaluates correspondences is missing. One possible
measure is the size of the hash-consed data structure that represents both dags
p and q after corresponding leaves are glued. A cost function is a prerequisite
to any analytic performance analysis. However, analytic performance analyses
are likely to be very difficult to carry out here and likely to be not very relevant
in practice. To name just one obstacle, an average case analysis requires VCs
to live in a probability space, and it is not at all clear what probabilities accu-
rately describe real VCs. It is therefore not very useful to fix a cost function.
Instead, pragmatism points towards experimental algorithmics. In this case,
objective experimental measures include the overall proving time (with and
without improving sharing) and the size of the pruned VC (with and without
improving sharing).

Intuitively, we expect any reasonable heuristic to work well in simple cases.
For example, if two big VCs can be obtained one from the other by a one-to-one
renaming of variables, then we expect a good heuristic to recover the necessary
one-to-one renaming. This is the case with VCs generated from the program in
Figure 6.1 (on page 87) with and without the comment on line 1, if the frontend
decorates variables with location information. In general, a good heuristic
matches what a human would do.

Example 14. The dags from Figure 6.3 represent two fairly big predicates. All
edge labels are empty. Most humans asked to match the variables of dag p with
the variables of dag q would match u1 −− v3 and u2 −− v2 and perhaps others.
If the sharing in dags p and q would be eliminated (see Section 5.4) then these
correspondences are harder to notice.

Because sharing benefits the search for identifier correspondences but hurts

98

pruning, an implementation in FreeBoogie should

1. find correspondences between dags,

2. then eliminate sharing (Section 5.4.2),

3. and then prune the VCs (Section 6.3.1).

Approach We begin by constructing a complete bipartite graph—its left nodes
are the leaves of the dag p and its right nodes are the leaves of the dag q. For each
node u on the left and each node v on the right there is an edge u −− v whose
weight indicates how similar nodes u and v are. Then we find a maximum
weight matching in this bipartite graph.

Any matching in a complete bipartite graph formed by the leaves of dag p
and, respectively, the leaves of dag q is a one-to-one correspondence between
some leaves of dag p and some leaves of dag q as Problem 9 requires. Which
matching is chosen depends on the heuristic used to compute the edge weights.
This heuristic is the knob we use to improve the results, while we keep the
overall structure of the solution unchanged.

Example 15. Continuing Example 14, Figure 6.3(c) shows the complete bipartite
graph that we build in the first step. Intuitively, we want the weights on edges
u1 −− v3 and u2 −− v2 to be relatively big, such that the second step selects
those edges.

Similarity of Leafs The remaining problem is simpler. Given a leaf u in the
dag p and a leaf v in the dag q, we must find a weight wp,q(u, v) which corre-
sponds to the intuitive notion of similarity. The weight might be computed, for
example, by looking at label(u) and label(v), the strings that label leaves u and v.
But Example 14 suggests that the location of a leaf in the dag is important.
The location of a leaf u in a labeled unordered dag p, denoted locationp(u), is a
multiset of string sequences, each string sequence corresponding to a path from
leaf u to the root of dag p.

Definition 27. The multiset locationp(u) contains the string sequence label(v1),
label(e1), label(v2), label(e2), . . . , label(vn) once for each path v1

e1← v2
e2← · · · vn

from the leaf u = v1 to the root(p) = vn.

Note that locationp(u) is a set if the dag p was built using hash-consing, that
is, if structural equality is equivalent to reference equality.

It is intuitive to use the information from leaf labels independently from the
information about the location of leaves.

(6.76) wp,q(u, v) = c(w1(label(u), label(v)), w2(locationp(u), locationq(v))

99

Function w1 measures the similarity of two strings, function w2 measures the
similarity of two multisets, and function c combines two similarities. Function c
should be increasing with respect to each of its arguments. Possible choices for
function c include

c(w1, w2) = αw1 + βw2 for positive α and β(6.77)

c(w1, w2) = w1w2 for positive w1 and w2(6.78)

Possible choices for function w1 include

• the longest common subsequence [97], w1(s, t) = lcs(s, t),

• the Jaro–Winkler [177] similarity,

• the inverse of a string distance, such as the edit distance [125], and

• the similarity of the multisets of labels’ ngrams, using various alternatives
available for the function w2.

Possible choices for function w2 include

• the Jaccard similarity [127, Chapter 1], w2(A, B) = 1− |A ∩ B|/|A ∪ B|,

• Dice’s coefficient [63], w2(A, B) = 2|A ∩ B|/(|A|+ |B|), and

• the opposite of a set distance, such as the Hamming distance [86].

(All these are easily adapted to multisets.)
FX7 uses

c(w1, w2) = w1 + w2(6.79)

w1(s, t) = lcs(s, t)(6.80)

w2(A, B) = 2|A ∩ B| −
∣∣|A| − |B|∣∣(6.81)

No experiment revealed a situation where a correspondence found by a human
was better than the one found by FX7. However, it is comforting to know that
there is ample room for tuning the heuristic, in case better results are needed.

Locations within Dags In the worst case, the location of a leaf u in a dag p
has size exponential in the number of nodes in the dag p.

Example 16. For dag p in Figure 6.3 (on page 98) we have

|locationp(u1)| = 1(6.82)

|locationp(u2)| = 2(6.83)

|locationp(u4)| = 4(6.84)

|locationp(u3)| = 8(6.85)

100

∧

∧

∧

∨

∨

∨

u1

u2

u4u3

v2

v3

v1

Figure 6.4: The trie of paths from Figure 6.3

LOCATION(x) // memoized
1 children := [] // empty list
2 for each incoming edge e
3 append

(
label(e), Location(source(e))

)
to children

4 return hashCons(label(x), children)

Figure 6.5: Algorithm for computing locations

A naive implementation of the function w2 is very slow in the worst case. To
compute it quickly, locations must be represented in a compact form.

Example 17. The locations of the leaves of dags p and q from Figure 6.3 can be
represented by the dag in Figure 6.4.

Hash-consing is used again. Notice that once the data structure in Figure 6.4
is built, a single reference comparison is enough to conclude that u1 and v3 have
the same location, and another reference comparison is enough to conclude
that u2 and v2 have the same location. Figure 6.5 shows the algorithm that
computes the data structure for representing locations, in the general case. On
line 2 it is assumed that the incoming edges of the original dag are available.
This is usually not the case for SMT dags and for Boogie ASTs, which is why a
simple preprocessing step is necessary. Hash-consing is invoked on the last line:
The call to hashCons returns an old data structure, if there is one with the same
content. Finally, note that the algorithm in Figure 6.5 assumes that there is a way
to extract labels from nodes and edges of the original dag (the method label).

6.4.2 Matching Boogie ASTs

If sharing is improved at the level of SMT dags, then the caches of FreeBoogie’s
transformers are not used. The new Boogie program is read, a new VC is
computed repeating all the work, and only then are commonalities observed.
Unfortunately, an implementation that improves sharing at the level of Boogie
ASTs is much harder to get right than one at the level of SMT dags, although
there does not seem to be any insurmountable conceptual issue.

101

One problem is that the substitution must be applied on the new Boogie
AST, which corresponds to dag q. The proof that any variable substitution in the
old VC is sound (see (6.70) on page 97) does not help here. Instead, it must be
argued that any one-to-one renaming does not change the semantics of Boogie
programs. Another problem is that variables with a limited scope are much
more common, so some special treatment for them may be desirable. (In fact,
the implementation in FX7 does treat quantifiers specially because they limit the
scope of variables.) On the bright side, some issues disappear. For example,
since there is no sharing within one Boogie AST (Section 3.3), locations within a
Boogie AST may be represented in the naive way.

In general though, any solution to Problem 9 should be adaptable to Boogie
ASTs. Nodes’ labels are the class names; edges’ names are the field names. (See
Section 3.3.)

6.5 Example

Let us go back to the example in Figure 6.1 on page 87. The method dayOfYear
is the method of interest. The other methods may or may not have bodies, but
that is irrelevant because the verification is modular. Three types of changes
are illustrated. First, adding line 1 is a trivial change. Second, adding line 8
is a change in the specification of another method. In general, whenever the
contract of a method is changed, all the methods that depend on this contract
must be re-verified. In particular, if a contract’s postcondition is strengthened,
then all dependent methods that were correct remain correct. Third, adding
line 15 or line 30 instructs the verifier to check extra properties. Note that adding
line 15 also entails re-verification of all the methods that depend on the method
dayOfYear, which are not of interest in this example.

Proving the VC generated by ESC/Java for the program of Figure 6.1 takes
about 17 seconds with Simplify in all cases. FX7 spends about 2 seconds to prune
the VC in all cases. This could be improved in a careful implementation in
FreeBoogie. For the original program plus line 1 or plus line 8, the pruned VC
is handled by Simplify in < 0.1 seconds. For the original program plus line 15,
the pruned VC is not handled faster by Simplify, so verification is slowed down
overall. For the original program plus line 30, the pruned VC is handled in
about 8 seconds by Simplify, so the proving time is approximatively cut in half.
These numbers show that, in some cases, a proper implementation of pruning
may be useful. Proving the same method with Z3 2.0 takes 0.5 seconds and with
FX7 takes about 2000 seconds. This suggests that pruning might be worthwhile
only for methods that are difficult to verify.

It is also possible to obtain the VC with FreeBoogie, although not completely

102

automatically. The program in Figure 6.1 without annotations can be com-
piled with javac (0.7 seconds) and then transformed into Boogie with B2BPL
(0.5 seconds). Then, annotations must be added manually in the Boogie code.
FreeBoogie then generates a VC (1.4 seconds) and then a prover is used (times
are as before). Keep in mind that all these times include repeatedly parsing
and writing to disk around 10 KB of data. The time taken by FreeBoogie is
quite big by comparison with the other stages of the pipeline, which suggests
that improving sharing at the Boogie AST level might be worthwhile even for
relatively easy problems like this one.

6.6 Conclusions

The previous sections of this chapter present a design for a future component of
FreeBoogie. The design is explored theoretically and also practically, through
the prototype implementation in FX7. The most appealing property of the design
is its flexibility.

The two important ideas are

1. finding common parts of two trees under renaming of (some) leaves and

2. pruning a VC based on an old valid VC.

The solution to the first problem is flexible because it depends on a similarity
measure for which there are many possible choices. The solution for the second
problem is flexible because of the generic proof technique, which can be used to
quickly check whether other simplification rules are sound.

The main drawback is the lack of substantial evidence that the particular
pruning method proposed in Section 6.3.1 does indeed reduce the size of typical
queries. All we know is that if it reduces the size, then it does so in a sound way.

A previously correct version of the program should almost always be avail-
able if the verification tool is used from the beginning. As a future development,
it would be interesting to see how to speed up verification when all known
previous VCs are invalid.

6.7 Related Work

The basic idea, that of taking advantage of the results of old runs to speed
up new runs, appears in incremental compilation [161], extreme model check-
ing [89], proof reuse [34], and in many other places. The work on proof reuse of
Beckert and Klebanov [34] is most similar to the work presented in this chap-
ter. However, they focus on interactive theorem proving, and their similarity
heuristic is quite different.

103

Detecting differences between trees is an area rich in research results. How-
ever, it seems that the goal of improving sharing by the renaming of leaves was
not addressed before. Usually the goal is to compute the tree edit distance [165]
and the accompanying edit script that completely transforms a tree into the
other. For unordered trees, such as those with associative–commutative opera-
tors, finding the tree edit distance is NP-hard [39], while for ordered trees cubic
time was achieved [60]. The cubic time matches that of the heuristic described
in Section 6.4, where the cubic time Hungarian algorithm [113] is used. (The
implementation of the Hungarian algorithm follows Knuth [112, program as-
sign lisa].) However, profiling shows that computing the matching takes far less
time than computing similarity weights between all pairs of leaves.

The idea of automatically pruning an SMT query based on the information
in a similar known query seems to be new.

There are many other approaches for improving the speed of program
verifiers. James and Chalin [100] run multiple different provers in parallel.
They also cache the text of VCs so that they never send the exact same query
to a prover twice. Although they speculate that normalizing identifiers would
reduce the brittleness of the cache, it seems that the techniques of Section 6.4 fit
perfectly their requirements.

Verifast [98] and jStar [66] are Java program verifiers that use symbolic
execution as an alternative to VC generation and their good performance seems
to owe to this design choice. It is interesting to note that Moore [135] shows
that interpreting a program according to some operational semantics leads to
exactly the same proof obligations as the subgoals necessary to prove a VC.

Babić and Hu [21] present a set of techniques for improving efficiency, includ-
ing caching results, combining a rough symbolic execution with VC generation,
and using application-specific theorem provers. They also use “maximally
shared graphs,” which are almost the same as hash-consed expressions. (Their
definition is more general because it allows cycles, but it seems that all their
graphs are actually dags.) Hash-consing was described in 1958 by Ershov [68],
and is a concept that keeps being rediscovered, so it probably deserves to be
better known.

The SMT community [27] standardized a language [28] for expressing predi-
cates and a command language for communicating with a solver.

In the theorem proving community, the string sequences that are part of
locations, as defined in Section 6.4.1, are known as path strings [157, Chapter 26].

Craig [56] proved that interpolants always exist:

LEMMA 1. If ` A ⊃ A′ and if A and A′ have a predicate parameter in common, then there
is an “intermediate” formula B such that ` A ⊃ B, ` B ⊃ A′, and all parameters of B are
parameters of both A and A′. Also, if ` A ⊃ A′ and if A and A′ have no predicate parameter
in common, then either ` ¬A or ` A′.

104

Interpolants are used in model checking [131], predicate refinement [103], loop
invariant inference [132]. Interpolation algorithms may, in general, exploit more
than the boolean structure of formulas: For example, Jain [99] gives algorithms
for finding interpolants for fragments of integer linear arithmetic.

105

106

Chapter 7

Semantic Reachability
Analysis

“To be successful you have to be selfish, or else

you never achieve. And once you get to your

highest level, then you have to be unselfish. Stay

reachable. Stay in touch. Don’t isolate.”

— Michael Jordan

Program verifiers typically check for partial correctness or termination, but
there are other interesting analyses. This chapter (1) explains when and why
reachability analysis is useful, (2) presents its theoretical underpinnings, and
then (3) presents and analyzes algorithms that make it practical.

7.1 Motivation

Semantic reachability analysis finds four seemingly unrelated types of problems:
dead code, doomed code, inconsistent specifications, and bugs in the frontend
of the program verifier.

7.1.1 Dead Code

Figure 7.1 illustrates two problems. Line 10 is dead in the standard sense; line 5
is dead only if annotations are taken into account.

Dead code analysis is standard in compilers. Java, for example, forbids any
statement following the statement return, because such situations are usually
bugs. The novelty here is that we take into account annotations, which may
be non-executable. When the precondition holds (line 2) the first if condition
(line 4) does not, so no exception is thrown.

107

1 static void m(int x)
2 requires x >= 0;
3 {
4 if (x < 0)
5 throw new IllegalArgumentException("x must be nonnegative");
6 · · ·
7 if (y < 1) {
8 · · ·
9 if (y > 1) {

10 · · ·
11 }}
12 }

Figure 7.1: Dead code

In current practice, programmers check arguments at the beginning of
the method body with a series of guarded throw statements. The pattern
if . . . throw . . . is short, but so pervasive that it still pays of to encapsulate in a
library (see, for example, [81, com.google.common.base.Preconditions]).

In the presence of annotations, however, the code that checks if arguments
are legal is mostly redundant.

If all calls to method m are checked statically against its specification, then no
runtime check is necessary. A runtime check remains desirable when unverified
code may call method m. There are Java compilers [44] that generate bytecode
from JML annotations. The translation is not perfect. One technical problem is
that JML preconditions do not have descriptions. If the expression is particularly
simple (such as x ≥ 0 in Figure 7.1) then it is possible to construct the description
automatically (“x must be nonnegative”). For longer expressions, though, the
automatically generated description is unwieldy and unuseful. The problem
is just technical since it has the simple solution of modifying JML to have
descriptions for preconditions, postconditions, and assertions. The second
problem is more serious. If the expression contains quantifiers, which in JML
are typically over very large domains like the integers, then it is not always
possible to check it efficiently at runtime. However, in such situations it is likely
that the programmer would have not written a runtime check.

Microsoft’s Code Contracts [133] uses an annotation language that is de-
signed to work both with run-time checking and with static analysis tools.

7.1.2 Doomed Code

Figure 7.2 illustrates two problems, one on line 7 and one on line 14. These are
the most common issues in practice (Section 7.4).

Execution always crashes at line 7, before printing. Any test that covers
line 7 would detect the problem, but test suites rarely have complete coverage.

108

1 abstract class C {
2 int f, g;
3 static void m1(C x) {
4 if (x != null)
5 x.f = 0;
6 else
7 System.out.println(x.f);
8 }
9 static void m2();

10 modifies f, g;
11 static void m3()
12 modifies f;
13 {
14 m2();
15 · · ·
16 }
17 }

Figure 7.2: Doomed code

The example is adapted from Hoenicke et al. [92], whose example is in turn
inspired by an old bug in Eclipse. Such bugs do occur in real software even if
they are easy to detect. It would therefore be beneficial to find such problems
automatically and without writing any test. (But this is true about any kind
of bug.) Another reason given by Hoenicke et al. [92] is compelling: The lack
of annotations does not lead to false positives. Most frequent complaints from
practicians about formal methods tools are that

1. it is too much work to add annotations and

2. there are too many false positives.

To be more precise, the lack of assumptions (stemming, for example, from the
lack of preconditions and object invariants) does not lead to false positives. A
program point is doomed if it crashes in every execution. If an assumption
is removed (which may mean, for example, that more values are allowed for
an argument), then all the old executions are still possible. In other words,
removing an assumption never turns a non-doomed program point into a
doomed program point.

Line 14 is also doomed, this time because of annotations, not because of the
code. The modifies clause lists the fields that a method is allowed to assign to.
From the point of view of the program verifier the execution never proceeds
past line 14, so all potential bugs that follow are hidden.

7.1.3 Inconsistent Specifications

Figure 7.3 illustrates two problems caused entirely by specifications.

109

1 pure static native int m1()
2 ensures result == result + 1;
3 static int m2(int x)
4 requires x < 0;
5 requires x > 0;
6 {
7 return x / 0;
8 }

Figure 7.3: Inconsistent specifications

1 int x;
2 for (int i = 5; −−i >= 0;)
3 x = i;
4 x = 1 / x;

Figure 7.4: Unsoundness of the frontend

The contract of method m1 cannot possibly correspond to a correct imple-
mentation, yet there is no implementation to check against the contract. In this
case the implementation is written in a different language, but sometimes it
is simply unavailable, for example if it comes from a proprietary library. The
example may seem silly since no one would make the mistake to think that
some integer equals its successor. However, inconsistencies may arise from
other causes. One example is specification inheritance: Since the conflicting
annotations are in different files it is hard for a human to notice. Another exam-
ple is the use of pure methods in specifications. The literature concerned with
tackling this latter source of inconsistencies is reviewed in Section 7.5.

Lines 4 and 5 illustrate another type of bug caused by inconsistent speci-
fications. The body of method m2 is available and the program verifier will
always report it is correct. Without reachability analysis, the bug is caught only
if method m2 is called. Such behavior is somewhat akin testing, which catches
bugs (only) by calling the (potentially) buggy methods.

In practice, inconsistent specifications are common.

7.1.4 Unsoundness and Bugs

The code in Figure 7.4, apart from being more than a little silly, will always
crash at line 4. That is not the issue relevant here, however. The issue is that the
problem may be missed by an unsound program verifier.

Again, the example might seem contrived. Why not get rid of unsoundness
in the first place instead? And why would we expect this problem to appear
often? Before answering these questions let us see why this is indeed a problem
in ESC/Java (with default options). ESC/Java was designed primarily to be

110

useful to programmers and it tackled the problem of false positives by choosing
to be unsound. One example of unsoundness is that, by default, loops are
unrolled three times. This means that all executions for which the body of the
loop is executed more than three times are not analyzed. All executions in
Figure 7.4 go through the loop body five times so, just before executing the loop
body for the fourth time, ESC/Java will top analyzing and miss the problem
on line 4. Note that if the loop would be executed n times instead of 5 times,
where n is a variable possibly less than four, then the problem on line 4 would
be caught [62].

We are now in a better position to answer the two questions.

First, a tool may choose to be unsound for engineering reasons. This is not
as bad as it may sound. We saw that a loop with a variable bound instead of
a constant bound does not cause problems, and variable bounds are probably
more common. Also, this is only the default behavior. A novice user is supposed
to get rid of the errors signaled in this unsound default mode of execution. An
expert user is supposed to ask ESC/Java to treat loops in a safe way. In this
case, the tool usually requires more guidance in the form of annotations.

Second, the unsoundness might not be intended, but rather a bug. In this
guise, reachability analysis is useful as a safeguard against buggy implementa-
tions of the program verifier itself. It is common for good programmers to write
routines that check for complex invariants at runtime and use these routines
during development. Reachability analysis has been used in this way in the
Boogie tool from Microsoft Research under the name of “smoke testing.”

7.1.5 An Unexpected Benefit

Finally, in conjunction with loop invariant inference techniques, reachability
analysis detects certain non-terminating programs. Consider the following code
fragment.

1 for (int i = 0; i < 10; ++j)
2 sum += i;
3 · · ·

It is easy to infer the loop invariant i = 0, which contradicts the negation i ≥ 10
of the loop condition. The code after the loop is unreachable because the loop
never terminates.

7.2 Theory

Semantic reachability analysis is performed after passivation (Chapter 4), so the
program it analyzes is an acyclic flowgraph without assignments.

111

Definition 28. A node x in a flowgraph is semantically reachable when the
flowgraph has an execution containing the state 〈σ, x〉 for some store σ.

For a correct flowgraph (see Theorem 3 on page 71), a node x is semantically
reachable when the flowgraph becomes incorrect after replacing the statement
of node x with assert false. (This is because according to (2.7) on page 14 there
is a transition 〈σ, x : assert false〉 error for all stores σ.) A naive algorithm
for semantic reachability analysis replaces each statement in turn by assert
false and reverifies the program. However, this algorithm handles only correct
flowgraphs and is slow.

There is a very easy way to make any flowgraph correct: Transform all
assertions into assumptions! Besides fixing all bugs, this transformation has the
useful property that it maintains semantic reachability.

Proposition 11. Consider a flowgraph G with no assignments and the flow-
graph H obtained by replacing each statement assert q with the statement
assume q. Node y is semantically reachable in flowgraph G if and only if it is
semantically reachable in flowgraph H.

Proof. According the operational semantics of core Boogie (see Chapter 2, espe-
cially (2.6)), a flowgraph has an execution

〈σ, x1 : assert/assume p1〉, . . . , 〈σ, xn : assert/assume pn〉, 〈σ, y〉

when there is a path x1 → · · · → xn → y in the flowgraph and there is a store σ

that satisfies p1 ∧ . . . ∧ pn. It is irrelevant whether intermediate statements are
assertions or assumptions as there is only one rule in the operational semantics
for both.

There is still the issue of efficiency. Chapter 5 showed that both vcwp and vcsp

can be computed in time linear in the size of the flowgraph. Since we need
to reverify the program once for each node in the flowgraph, the total time
to compute the prover queries is quadratic in the size of the program. Most
flowgraphs in practice have at most hundreds of nodes and hundreds of edges,
which means that a quadratic algorithm will be very fast and the real problem
is the time spent in the prover.

The next section is concerned with reducing the number of calls to the
prover. Before that, let us briefly see how to compute all prover queries at once
in linear time.

If there is an execution that contains the state 〈σ, y〉, then the previous
states 〈σ, x〉 correspond to nodes x that have a path x y to node y. Hence,
to determine whether such executions exist we can look at the sub-flowgraph

112

induced by nodes x that can reach node y. This observation speeds the compu-
tation of VCs by a factor of two, for both methods—weakest precondition and
strongest postcondition.

Observe now that the precondition ay computed by the strongest postcon-
dition method (Section 5.2.3) depends only on nodes x that can reach node y.
In other words, the precondition ay does not change when we select a sub-
flowgraph corresponding to some other node y′ that is reachable from node y,
so it needs not be recomputed. We simply compute all preconditions ax in
linear time according to the equations for the strongest postcondition method in
Section 5.2.3. When we replace statement x by assert false it becomes the only
assertion in the flowgraph and the VC according to (5.20) is ¬ax. We proved the
following proposition.

Proposition 12. A node y is semantically reachable if and only if its precon-
dition ay computed using the strongest postcondition method (Chapter 5) is
satisfiable, that is, when |¬ay| holds.

According to (5.19) (on page 74) there is no difference between assume
and assert when computing preconditions ax and postconditions bx using the
strongest postcondition method. So one advantage of the strongest postcondi-
tion method is that we do not have to transform assertions into assumptions
at all. Another clear advantage of the strongest postcondition method is that it
produces all prover queries in linear time, as opposed to the weakest precondi-
tion method which requires quadratic time. It is intuitive that ‘going forward’
is better suited for analyzing semantic reachability.

Types of Problems Nodes that are semantically unreachable are likely to be
caused by bugs. For example, the contradictory preconditions in Figure 7.3 (on
page 110) cause the body of method m2 to be semantically unreachable. It is
therefore interesting to find potential causes of unreachable code.

A node x is a blocker when it is reachable but lets no execution pass through
it. That is, there is no execution containing 〈 , x〉, 〈 , 〉. Yet in other words, the
only possible successor of state 〈 , x〉 (in an execution) is the error state, which
happens exactly when ¬bx is valid. A node is semantically unreachable if all its
predecessors are blockers, according to (5.18) (on page 74).

Semantic reachability analysis detects three types of problems:

1. Semantically unreachable nodes. This includes all dead code.

2. Blocker assumptions. These are likely root causes for semantically un-
reachable nodes, so they point closer to the actual bug.

113

NAIVEREACHABILITYANALYSIS(G)

1 for each statement x of G
2 if Valid(Not(Pre(x)))
3 report that node x is semantically unreachable
4 else if statement x is an assertion and Valid(Not(Post(x)))
5 report that node x is doomed

Figure 7.5: A simple algorithm for semantic reachability analysis

3. Blocker assertions, also known as doomed program points. These are
bugs that manifest in every execution.

Formally, there can be no error after a blocker. That is, there is no execution
that goes wrong after it passed through a blocker, for the simple reason that
there is no execution passing through a blocker. However, intuitively it is
helpful to think of blockers as potentially hiding subsequent bugs.

7.3 Algorithm

Figure 7.5 summarizes the algorithm suggested by the previous section. The
methods Pre and Post are those from Figure 5.2 (on page 76); the method Not(p)
constructs the SMT dag that represents the predicate ¬p, perhaps carrying out
basic simplifications; the method Valid checks whether its argument represents
a valid predicate by querying the prover. The |V| calls to the method Pre take
O(|V|+ |E|) time and similarly for method Post (see the proof of Proposition 7
on page 76).

This algorithm reports too many errors. For the Boogie program

1 assume false;
2 assert p1;
3 · · ·
4 assert pn;

it prints n error messages, one for each assertion. Surely, the user would prefer
one error message that points at the assumption, which is the cause of all the
other errors.

More seriously, it turns out that this algorithm, even if it takes just linear
time to build the prover queries, is unusable in practice because it is too slow. It
is simply not acceptable to call the prover |V| times for one method. A typical
method has |V| ≈ 100 nodes, and one call to the prover typically takes between
a tenth of a second and one second.

Remark 15. All the times are given for an implementation inside ESC/Java,
which is activated by the option -era. ESC/Java has a robust frontend for Java
with JML annotations, so it is easier to perform meaningful experiments. The

114

1

2

3

4

(a)

1

2

3

4

(b)

1

2

3

4

(c)

1

2

3

4

(d)

1

2

3

4

(e)

Figure 7.6: A path flowgraph with 4 nodes

implementation first constructs a flowgraph essentially equivalent to those built
by FreeBoogie, so the implementation should be easy to adapt.

7.3.1 The Propagation Rules

Figure 7.6(a) shows a path flowgraph. (Node 1 is the initial node.) Node 4 is
semantically reachable when there is an execution that contains the state 〈σ, 4〉,
for some store σ. Such an execution must correspond to some path from the
initial node 1 to node 4, and the only such path is 1 → 2 → 3 → 4. Hence,
the execution is 〈σ, 1〉, 〈σ, 2〉, 〈σ, 3〉, 〈σ, 4〉, which means that the other nodes
are semantically reachable too. (The store is not modified by assertions or
assumptions.) This motivates the study of the following problem, which is
more abstract.

Problem 10. Alice and Bob play a game. They start by sharing the flowgraph G.
Then Alice secretly colors the nodes with white and black such that each white
node is connected by a white path with the initial node. Bob’s goal is to re-
construct the coloring by asking Alice as few questions as possible. He is
allowed to ask “what is the color of node x?” for any node x and Alice will
answer truthfully.

Remark 16. Alice is the theorem prover, Bob is FreeBoogie (or ESC/Java), white
nodes are semantically reachable nodes, and black nodes are semantically un-
reachable nodes.

Bob’s flowgraph initially has only gray nodes and, by the end, he colors
each with either white or black. At some intermediary stage, he has some white
nodes, some black nodes, and the rest are gray. We say that two colorings are
consistent when there is no node that is white in one coloring and black in
the other. Bob maintains his coloring consistent with Alice’s coloring. (Also,
because it is not useful, he never changes the color of a node into gray.) A valid

115

Figure 7.7: Worst case flowgraph

coloring has no gray node and satisfies the condition that

(7.1) every white node is reachable from the initial node by a white path.

For example, Figure 7.6 shows all the valid colorings of a path flowgraph.
A possible coloring (at some intermediate stage) is a valid coloring that is
consistent with Bob’s coloring. The rule which Bob uses to paint nodes white
or black is simple: If node x is white in all possible colorings, then Bob colors
it white; if node x is black in all possible colorings, then Bob colors it black.
Obviously, this maintains the invariant that Bob’s coloring is consistent with
Alice’s coloring. To ensure progress, Bob asks Alice from time to time about the
color of a node that is still gray in his coloring.

Example 18. Consider the flowgraph in Figure 7.7. The initial node is always
reachable. Assuming that Bob starts with the initial node white and the others
gray, he must ask 5 questions. After asking k questions he must consider 25−k

possible colorings. However, the preconditions of all non-initial nodes are
the same as the postcondition of the initial node. Therefore, they are either
all semantically reachable or all semantically unreachable, and this can be
determined with one call to the prover.

Example 18 seems to suggest that performance is hurt because Problem 10 is
too abstract. Related to this, it seems that the theorem prover is never queried
about doomed code (unsatisfiable postconditions), but only about semantically
unreachable code (unsatisfiable preconditions). Both these issues have an easy
fix. Instead of playing the color game on the original flowgraph, Alice and
Bob play it on a modified flowgraph that has two nodes xi and xo for each
node x in the original flowgraph. Node xi takes over the incoming edges of
node x; node xo takes over the outgoing edges of node x. Also, there is an
edge xi → xo. When Bob asks Alice about the color of node xi, this means that
ESC/Java (or FreeBoogie) asks the theorem prover about the satisfiability of the
precondition ax; when Bob asks Alice about the color of node xo, this means
that ESC/Java (or FreeBoogie) asks the theorem prover about the satisfiability
of the postcondition bx.

Bob does not want to look at each possible coloring, because there might be
an exponential number of them. Hence, he must characterize the nodes whose
color he can infer without referring to all possible colorings.

116

Definition 29. Node x of a flowgraph dominates node y when all paths from
the initial node to node y contain node x. Node x immediately dominates
node y if x 6= y and all nodes that dominate node y also dominate node x.

Proposition 13. A gray node is white in all possible colorings if and only if it
dominates a white node in the non-black subgraph (in Bob’s coloring).

Proof. Because Bob’s coloring is consistent with a valid coloring it is possible,
for each white node y, to find a non-black path from the initial node to node y.
Consider the coloring constructed by picking such a path for each white node
and then painting all these paths white; then paint the remaining gray nodes
black. This coloring is possible by construction. Also, whenever white node y
is processed, choose a path that avoids node x, if possible. This shows that if
node x does not dominate a white node, then there are some possible colorings
in which it is black.

For the converse, consider a coloring in which node x is black and dominates
white node y. Then (7.1) is violated and the coloring is invalid.

Similarly, one can prove the following.

Proposition 14. A gray node x is black in all possible colorings if and only if all
the paths from the initial node to node x contain a black node (in Bob’s coloring).

An immediate consequence of the last two proposition will prove useful.

Corollary 1. A gray node is sometimes white and sometimes black in possible
colorings if and only if in the non-black subgraph (a) it does not dominate a
white node and (b) it is connected to the initial node. (Again, in Bob’s coloring.)

Figure 7.8 shows how Bob paints his flowgraph. The method ComputeDom-
inators computes the dominator tree of a graph (Section 7.3.2). The method
PickQueryNode returns some gray node (Section 7.3.3). The main loop of the
method RecoverColoring maintains the invariants:

1. The coloring is consistent with Alice’s coloring.

2. For each gray node, there are possible colorings in which it is white and
possible colorings in which it is black.

It is easy to see that both invariants hold when all the nodes are gray. Let us see
why they are maintained, first in the case when Alice says that node x is white
and then in the case when Alice says that node x is black.

117

PROPAGATEWHITE(y, T)
1 paint node y in white
2 PropagateWhite(parent of y in tree T)
PROPAGATEBLACK(x, G)

1 paint node x in black
2 for each gray successor y of node x in G
3 if all predecessors of node y are black
4 PropagateBlack(y, G)

RECOVERCOLORING(G)

1 paint in gray all the nodes of the flowgraph G
2 while there are gray nodes
3 T := ComputeDominators(non-black subgraph of G)
4 x := PickQueryNode(G, T)
5 if AskAlice(x) = white
6 PropagateWhite(x, T)
7 else
8 PropagateBlack(x, G)

Figure 7.8: Solution outline for Problem 10

If Alice says that node x is white then there are no possible colorings in
which it is black, so it must be painted white to maintain invariant 2. This is
done on line 1 of the method PropagateWhite when it is first called from line 6 of
the method RecoverColoring. However, painting node x in white might break
invariant 2 with respect to another gray node, because gray nodes must not
dominate white nodes (Corollary 1). This problem is fixed by painting all the
dominators of node x in white, which is allowed by Proposition 13. It follows
from the definition of an immediate dominator (Definition 29) that method
PropagateWhite visits exactly the dominators of node x.

If Alice says that node x is black then, for similar reasons as in the previous
case, it must be painted black. This may break the other part of invariant 2,
namely, it may disconnect gray nodes from the initial node in the non-black
subgraph. Should this happen, Proposition 14 says that all the disconnected gray
nodes must be painted black. This is the purpose of the method PropagateBlack.
Let us say that a node is immediately disconnected when all its parents are black.
Initially no node is immediately disconnected (invariant 2) but one may become
so when its parent is painted black (on line 1 of the method PropagateBlack).
Whenever this happens it will be visited. Therefore, the method PropagateBlack
visits and paints in black all immediately blocked nodes. Now it is easy to see
that if all immediately blocked nodes are black, then there is no gray node that
is disconnected from the initial node in the non-black subgraph. Pick some gray
node. Because it is not black, it is not immediately blocked, so it has a non-black
predecessor. Then repeat.

118

We have proved that the algorithm is correct. It is also fast.

Proposition 15. If calls ComputeDominators(), PickQueryNode(), and AskAlice()
each takes constant time, then the execution of method RecoverColoring takes
O(|V|+ |E|) time.

Proof. The methods PropagateWhite and PropagateBlack are called only for gray
nodes and the first action paints the given node in black or white. Therefore,
they are called at most once per node.

The method PropagateBlack examines the outgoing edges of node x, so it
might examine all edges by the end. The condition on line 3 of the method
PropagateBlack can be evaluated in constant time if each node keeps a count of
its non-black parents.

7.3.2 Dominators Tree for Dags

This section is a brief reminder of basic algorithms related to dominators. It
explains how the method ComputeDominators in Figure 7.8 is implemented.

The dominators tree T of a flowgraph G is a tree in which the parent of
node x, denoted idom(x), is the immediate dominator of node x in the flow-
graph G. The root of the dominators tree is the initial node of the flowgraph,
which is the only node without an immediate dominator. All other nodes y
obey the equation

(7.2) idom(y) = LCA({ x | x → y }),

where LCA(S) is the root of the smallest dominators subtree that contains the
set S of nodes.

The method ComputeDominators examines nodes in a topological order of
the flowgraph and inserts them as leaves in the proper place in the dominators
tree that it builds. When node y is processed all its predecessors x have taken
their place in the dominators tree so LCA can be computed.

7.3.3 Choosing the Query

A greedy algorithm always asks the query whose answer provides most infor-
mation. If the probability of receiving the answer black is p, then the information
provided by the answer is −p lg p− (1− p) lg(1− p), which has a maximum
at p = 1/2 and is symmetric around that point. In other words, the greedy
information theoretic approach says that Bob should always inquire about the
node whose probability of being black is as close as possible to 1/2.

119

An Example To estimate the probability of various nodes being black we need
a model. Let us go back to the example flowgraph in Figure 7.6 (on page 115).
The simplest possible model is the one in which each node has an independent
probability p of having a bug and probability q = 1− p of not having a bug. A
node with a bug is black, and so are all that follow it. In this model, the five
possible colorings of Figure 7.6 have probabilities (a) q4, (b) q3 p, (c) q2 p, (d) qp,
and (e) p. The probability that node x is black is the sum of probabilities of
possible colorings in which node x is black. For the nodes in Figure 7.6 we have
(1) 1− q, (2) 1− q2, (3) 1− q3, and (4) 1− q4.

In general, for a path flowgraph with nodes 1→ 2→ · · · → n, the probabil-
ity that node k is black is

(7.3) pk = 1− (1− p)k

where p is the probability that a node has a bug. In the common case, we
expect the analysis to be run on code that is mostly correct. Indeed, bugs are
usually clustered in the region of the code that is actively developed, while the
program verifier is run on the whole code base. Hence, in a first approximation,
it is reasonable to expect p to be very small. Then pk ≈ kp and, if p is really
small, the probability that is closest to 1/2 is pn. In other words, if we are fairly
confident that the code is correct, then we should query the last node in the
path. If the code is indeed correct, then we are done after one query.

However, if the first query returns black then there is at least one bug. The
expected number of bugs for the model we use is b = pn. (The number of bugs
has the probability generating function

(7.4) B(z) = ∑
k

(
n
k

)
(1− p)n−k pkzk = (1− p + pz)n,

so the average is B′(1) = pn.) Therefore, if we expect the program to have
b bugs, then it makes sense to choose

(7.5) p = b/n

in our model. Solving pk = 1/2 we obtain

(7.6) k = −1/ lg(1− p) ≈ (ln 2)/p.

Plugging in the estimate (7.5) we finally arrive at

(7.7) k ≈ 0.7 · n/b

In other words, the information theoretic greedy strategy is a binary search that
splits the interval i. . j not at i + 0.5(j− i), but at i + (0.7/b)(j− i), where b is
the expected number of bugs in the interval i. . j.

120

REACHABILITYANALYSIS(G)

1 construct H by splitting nodes of G
2 paint the initial node of H white and the others gray
3 T := ComputeDominators(H)
4 while H has gray nodes
5 x := a leaf from the deapest level of T
6 if Valid(Not(Formula(x)))
7 PropagateBlack(x, H)
8 let [y1, . . . , yn] be the path in T from y1 = root(T) to yn = x
9 i := 1, j := n

10 while i + 1 < j // yi is white, yj is black
11 k := round(i + 0.7(j− i))
12 if Valid(Not(Formula(yk)))
13 PropagateBlack(yk, H)
14 j := k
15 else
16 PropagateWhite(yk, T)
17 i := k
18 T := ComputeDominators(non-black subgraph of H)
19 else
20 PropagateWhite(x, T)

Figure 7.9: Algorithm for semantic reachability analysis

The General Case Most observations for path flowgraphs generalize easily.
We will have two modes of work, one in which we expect no bug and one in
which we expect one bug. When we expect no bug we will pick a gray node
that is far from the initial node. When we expect one bug we will perform a
binary search on a path of nodes in the dominator tree. The key here is that
color propagation rules on paths in the dominator tree are exactly the same as
the color propagation rules for a path flowgraph.

Figure 7.9 summarizes all the observations made so far. Line 1 splits each
node x of the flowgraph into a node xi carrying the precondition ax and a
node xo carrying the postcondition bx. Later these predicates are accessed
using the method Formula(). Line 2 colors the initial node white to establish the
invariant of the loop on line 10.

7.3.4 Performance

If the verified flowgraph has no bugs (no semantically unreachable statements
and no doomed code) then l queries are necessary and sufficient, where l is
the number of leaves in the flowgraph. The algorithm reaches this bound. In
other words, if there are no bugs, then the prover is queried once for each return
statement in the program. For each bug, there are ∼ lg h extra queries, where
h is the (average) length of a path in the flowgraph from the initial node to a

121

return node. In total, there are roughly l + b lg h queries for a program with
b bugs.

Experiments The frontend of ESC/Java (JavaFE) contains 1890 methods and
is one of the largest coherent JML-annotated code base. Verifying it takes
31589 seconds (almost 9 hours), out of which 34.8% is spent in semantic reacha-
bility analysis, out of which 99.8% is spent in the prover. The total number of
leaves in flowgraphs is 3256 and the total number of prover queries is 3351. In
other words, on average per method

• semantic reachability analysis takes 5.82 seconds,

• out of which 5.81 seconds are spent in 1.77 prover queries (not much more
than the number of return statements, which is 1.72)

• and the other 0.01 seconds are spent computing prover queries, deciding
which queries to perform, and propagating semantic reachability informa-
tion in the flowgraph.

(This benchmark was run using the default treatment of loops in ESC/Java—
unrolling once.)

7.4 Case Study

The frontend of ESC/Java (known as JavaFE) consists of 217 annotated classes
with 1890 methods. Semantic reachability analysis revealed ≈ 50 issues. Short
descriptions of these problems follow, each description preceded by the number
of cases to which it applies.

7.4.1 Dead Code

1 A catch block was unreachable because it was catching a RuntimeException
and the specifications of methods called in the try block did not signal
that exception type.

9 Informal comments indicated that the dead code is intended. JML has an
equivalent annotation, which ESC/Java understands and should be used
instead of the informal comments.

1 The code was semantically unreachable in the classic sense (no annotation
involved.)

122

7.4.2 Doomed Code

6 A few assertions were bound to fail on any input.

9 The scenario illustrated by methods m2 and m3 in Figure 7.2 on page 109.
The method call was bound to fail.

7.4.3 Inconsistent Specifications

5 Inconsistencies in the JDK specifications that ship with ESC/Java. They
were filed as ESC/Java bugs #595, #550, #568, #549, and #545. These are
bugs whose cause was hard to track. Before, they have escaped for years
the ESC/Java’s test-suite that was designed to catch them.

7.4.4 Unsoundness and Bugs

1 The JDK specification used a JML informal comment. According to the
semantics of JML, an informal comment should not cause warning mes-
sages. Roughly, this means that, depending on the context, an informal
comment should be treated sometimes as true and sometimes as false.
However, ESC/Java always treats is as true. See ESC/Java bug #547 for
details.

4 Loops with a constant bound that is bigger than the loop unrolling limit.

2 If the modifies clause is missing on a method m, ESC/Java considers that
method m is allowed to modify any global variable while checking it, but
assumes that method m does not modify any global state while checking
methods that call it. This is obviously unsound (and motivated by the
desire to not flood new users with irrelevant warnings).

7.4.5 Others

12 The cause of these warnings provided by the semantic reachability analy-
sis is unclear. Given the experience of tracking down the cause of some
of the other warnings, it is likely that a complex interaction between
annotations located in different files is involved.

7.5 Conclusions and Related Work

This chapter presents the theoretical underpinnings of semantic reachability
analysis for annotated code and an efficient algorithm for finding

1. dead code,

123

2. doomed code,

3. inconsistent specifications, and

4. unsoundness bugs.

Abstract interpretation [55] and symbolic execution [106] are program ver-
ification techniques that can easily detect semantically unreachable code as a
by-product, although they seldom seem to be used for this purpose. To en-
sure termination, these techniques usually over-approximate the set of possible
states, which means that they might conclude that some code is semantically
reachable, although it is not.

Lermer et al. [123] give semantics for execution paths using predicate trans-
formers. In particular, they define dead paths and dead commands. A dead
path is one that is taken by no execution; a dead command is a program whose
VC computed by the weakest precondition method is unsatisfiable.

Hoenicke et al. [92] explain why it is desirable to detect doomed code. Their
implementation uses the weakest precondition method to compute prover
queries associated with each node. The irrelevant portions of the flowgraph
are turned off using auxiliary variables rather than explicitly manipulating the
flowgraph (see Section 7.2).

Chalin [45] explains why it is desirable to have automatic sanity checks
for specifications and designs an automated analysis that finds bugs in JML
annotations, other than plain logic inconsistencies.

Cok and Kiniry [51, 52] explain how ESC/Java handles method calls that
appear in annotations. Darvas and Müller [58] point out that that treatment
is unsound because some annotations are translated by ESC/Java’s frontend
into inconsistent assumptions. Their solution is a set of syntactic constraints
on the use of method calls in annotations. Rudich et al. [159] relax these con-
straints while maintaining soundness. Leino and Middelkoop [119] replace the
syntactical constraints with queries to the theorem prover. Semantic reachability
analysis will signal most problems caused by the use of method calls in specifi-
cation, because they manifest as inconsistencies at the level of the intermediate
representation (Boogie). However, being a generic analysis, the error message is
usually not very informative. Another shortcoming of the semantic reachability
analysis compared to the other specialized solutions is that it does not ensure
that specifications are well-founded.

The naive version of semantic reachability analysis is used in the static
verifier Boogie from Microsoft Research under the name “smoke testing” and is
used mostly for catching bugs in front-ends for Boogie.

ESC/Java [71] is a program verifier for Java annotated with JML [115, 52].
By design, ESC/Java favors user friendliness over soundness.

124

The method ComputeDominators uses the algorithm of Cooper [54], which
is easy to implement and works fast in practice [78]. (There are linear time
algorithms, such as the one of Buchsbaum et al. [43].) Probability generating
functions, such as the one used in Section 7.3.3, are treated by most probability
textbooks, such as Graham et al. [82, Chapter 8].

125

126

Chapter 8

Conclusions

“I love to travel but I hate to arrive.”

— Albert Einstein

The design of FreeBoogie (Chapter 3) does not surprise much those who write
program verification tools, although it has a few distinctive characteristics.
FreeBoogie spends most of its time transforming step-by-step a Boogie program
into simpler and simpler Boogie programs. The steps are always as small as
possible. For example, even if the call statements could be desugared into
assume and assert statements in one step, FreeBoogie does it in two steps. After
each transformation, FreeBoogie type-checks the intermediate program to rule
out egregious bugs. Correctness has a very high priority in deciding the design.
The main data structures of FreeBoogie are immutable. A nice side-effect of
immutability shows that correctness and efficiency are not always competing
goals. Because pieces of Boogie programs are represented by immutable data
structures, they can act as keys in caches, which makes it easy to avoid re-doing
the same work (Chapter 6).

Operational semantics, Hoare logic, and predicate transformers are ways
to define programming languages. This dissertation uses all three for a subset
of Boogie and lingers on the relations between the three (Chapter 5). Being
able to quickly switch between different points of view on the semantics of
Boogie programs is essential in understanding the techniques presented later
(Chapters 6 and 7).

The algorithmic problems solved in this dissertation (Chapters 4 and 7)
are not particularly difficult. The most difficult part is the proof of Theorem 2
in Section 4.4.1. Program verifiers try to solve instances of an undecidable
problem, which makes for a good excuse to not analyze their algorithms. But,
there is not much undecidable going on in many parts of a program verifier. In
particular, a VC generator is a place full of little algorithms that deserve to be

127

better understood.
The goal of this dissertation is to give an account of some interesting but

often overlooked parts of a VC generator. The meta-goal of this dissertation
is to find connections between program verification, programming languages,
and algorithms.

It also happens that the dissertation could serve as a suitable guide for a
developer who wants to contribute to the VC generator FreeBoogie. There are
32 000 lines of code that handle the tasks described in this dissertation. (About
23 000 of them are generated by ANTLR, CLOPS, and AstGen.) This infrastruc-
ture could serve for future developments such as invariant inference (perhaps
via abstract interpretation), termination detection (which would probably en-
tail enriching the Boogie language), and other experiments with the Boogie
language (such as adding operators from separation logic).

Specific contributions include:

• the design of the VC generator, including discussions of the main design
decisions;

• a precise definition of passivation and a study of its algorithmic properties;

• a comparison between the weakest precondition and the strongest post-
condition methods of generating VCs;

• various semantics for a subset of the Boogie language—operational se-
mantics, Hoare logic, predicate transformers—and a discussion of the
relations between them;

• an algorithm for unsharing expressions, a problem that is usually tangled
with computing the weakest precondition efficiently;

• a proof technique for the correctness of algorithms that simplify a VC
based on a known old VC;

• a heuristic for detecting common parts of two expression trees, such as
two VCs;

• the semantic reachability analysis, in the context of program verifiers;

• an efficient heuristic for finding dead code, doomed code, inconsistent
specifications, and soundness bugs.

128

Appendix A

Notation

“The best notation is no notation; whenever it is

possible to avoid the use of a complicated

alphabetic apparatus, avoid it. A good attitude to

the preparation of written mathematical

exposition is to pretend that it is spoken. Pretend

that you are explaining the subject to a friend on

a long walk in the woods, with no paper available;

fall back to symbolism only when it is really

necessary.”

— Paul Halmos [163]

notation description

A, B, . . . sets; objects with an internal structure

Z the set of integers −1, 0, 1, . . .

Z+ the set of nonnegative integers 0, 1, . . .

R the set of real numbers

R+ the set of nonnegative real numbers

a ∈ A or a : A a is an element of the set A

A× B the cartesian product of the sets A and B

A→ B or BA the set of functions from A to B;→ is right associative

f x or f (x) function application; space is left associative and binds
tighter than all else

w(P) {w(x) | x ∈ P }

f ◦ g function composition: (f ◦ g) x = f (g x) for all x in the
domain of g

> true

⊥ false

129

B the set {>,⊥} of booleans

e, f expressions, possibly predicates

p, q, r predicates

a preconditions

b postconditions

u, v, w variables

x, y, z statements, nodes in a graph

m, n integer constants

i, j, k integer variables, indexes

wp the weakest precondition predicate transformer

sp the strongest postcondition predicate transformer

x → y directed edge from node x to node y

x P
 y

denotes a path P from node x to node y; the path P is
sometimes seen as a set of nodes that includes
the endpoints

graph node

graph node of interest; read-write flowgraph node

read-only flowgraph node

write-only flowgraph node

x y read node with incoming edges from the nodes x and y

G, H graphs, flowgraphs, programs

V the set of nodes of a graph

E the set of edges of a graph

P, Q paths, sets of nodes

[p] 1 if p evaluates to >, 0 otherwise

|p| > if the predicate p is valid, ⊥ otherwise

130

Bibliography

[1] ACL2 homepage.
http://www.cs.utexas.edu/users/moore/acl2/.

[2] BLAST homepage.
http://mtc.epfl.ch/software-tools/blast/.

[3] Bogor homepage.
http://bogor.projects.cis.ksu.edu/.

[4] CHESS homepage.
http://research.microsoft.com/en-us/projects/chess/.

[5] Coq homepage.
http://coq.inria.fr/.

[6] Crystal homepage.
http://code.google.com/p/crystalsaf/.

[7] Frama-C homepage.
http://frama-c.cea.fr/.

[8] FxCop blog.
http://blogs.msdn.com/fxcop/.

[9] HOL homepage.
http://hol.sourceforge.net/.

[10] Isabelle homepage.
http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

[11] Java collections API design FAQ.
http://java.sun.com/j2se/1.5.0/docs/guide/collections/

designfaq.html.

[12] Java Pathfinder homepage.
http://babelfish.arc.nasa.gov/trac/jpf.

131

http://www.cs.utexas.edu/users/moore/acl2/
http://mtc.epfl.ch/software-tools/blast/
http://bogor.projects.cis.ksu.edu/
http://research.microsoft.com/en-us/projects/chess/
http://coq.inria.fr/
http://code.google.com/p/crystalsaf/
http://frama-c.cea.fr/
http://blogs.msdn.com/fxcop/
http://hol.sourceforge.net/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://java.sun.com/j2se/1.5.0/docs/guide/collections/designfaq.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/designfaq.html
http://babelfish.arc.nasa.gov/trac/jpf

[13] NQuery homepage.
http://www.codeplex.com/NQuery.

[14] NuSMV homepage.
http://nusmv.irst.itc.it/.

[15] PMD homepage.
http://pmd.sourceforge.net/.

[16] PVS homepage.
http://pvs.csl.sri.com/.

[17] RuleBase homepage.
http://www.haifa.ibm.com/projects/verification/RB_Homepage/.

[18] SPIN homepage.
http://spinroot.com/spin/whatispin.html.

[19] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers Principles, Techniques, and Tools. Addison–Wesley, 2007.

[20] Lloyd Allison. A Practical Introduction to Denotational Semantics.
Cambridge University Press, 1986.

[21] Domagoj Babic and Alan J. Hu. Calysto: scalable and precise extended
static checking. In Wilhelm Schäfer, Matthew B. Dwyer, and Volker
Gruhn, editors, ICSE, pages 211–220. ACM, 2008.

[22] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
SLAM and static driver verifier: Technology transfer of formal methods
inside Microsoft. In Eerke A. Boiten, John Derrick, and Graeme Smith,
editors, IFM, volume 2999 of Lecture Notes in Computer Science, pages
1–20. Springer, 2004.
http://research.microsoft.com/en-us/projects/slam/.

[23] Anindya Banerjee, Mike Barnett, and David A. Naumann. Boogie meets
regions: A verification experience report. In Natarajan Shankar and Jim
Woodcock, editors, VSTTE, volume 5295 of Lecture Notes in Computer
Science, pages 177–191. Springer, 2008.

[24] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem P. de Roever, editors, FMCO, volume 4111 of
Lecture Notes in Computer Science, pages 364–387. Springer, 2005.

132

http://www.codeplex.com/NQuery
http://nusmv.irst.itc.it/
http://pmd.sourceforge.net/
http://pvs.csl.sri.com/
http://www.haifa.ibm.com/projects/verification/RB_Homepage/
http://spinroot.com/spin/whatispin.html
http://research.microsoft.com/en-us/projects/slam/

[25] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of
unstructured programs. In Michael D. Ernst and Thomas P. Jensen,
editors, PASTE, pages 82–87. ACM, 2005.

[26] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec]

programming system: An overview. Lecture Notes in Computer Science,
3362:49–69, 2005.

[27] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB).
http://www.SMT-LIB.org/, 2010.

[28] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories (Edinburgh,
England), 2010.

[29] Clark Barrett and Cesare Tinelli. CVC3. In Damm and Hermanns [57],
pages 298–302.
http://www.cs.nyu.edu/acsys/cvc3/.

[30] Clark W. Barrett, Leonardo Mendonça de Moura, and Aaron Stump.
SMT-COMP: Satisfiability modulo theories competition. In Kousha
Etessami and Sriram K. Rajamani, editors, CAV, volume 3576 of Lecture
Notes in Computer Science, pages 20–23. Springer, 2005.
http://www.smtcomp.org/.

[31] Gilles Barthe, Lilian Burdy, Julien Charles, Benjamin Grégoire, Marieke
Huisman, Jean-Louis Lanet, Mariela Pavlova, and Antoine Requet.
JACK–a tool for validation of security and behaviour of Java applications.
In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P.
de Roever, editors, FMCO, volume 4709 of Lecture Notes in Computer
Science, pages 152–174. Springer, 2006.
http://www-sop.inria.fr/everest/soft/Jack/jack.html.

[32] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C
specification language.
http://www.frama-c.cea.fr/download/acsl_1.4.pdf.

[33] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors.
Verification of object-oriented software: the KeY approach, volume 4334
of Lecture Notes in Artificial Intelligence. Springer, 2007.
http://www.key-project.org/.

133

http://www.SMT-LIB.org/
http://www.cs.nyu.edu/acsys/cvc3/
http://www.smtcomp.org/
http://www-sop.inria.fr/everest/soft/Jack/jack.html
http://www.frama-c.cea.fr/download/acsl_1.4.pdf
http://www.key-project.org/

[34] Bernhard Beckert and Vladimir Klebanov. Proof reuse for deductive
program verification. In SEFM, pages 77–86. IEEE Computer Society,
2004.

[35] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Avner Landver.
RuleBase: An industry-oriented formal verification tool. In DAC, pages
655–660, 1996.

[36] Nick Benton. Simple relational correctness proofs for static analyses and
program transformations. In Neil D. Jones and Xavier Leroy, editors,
POPL, pages 14–25. ACM, 2004.

[37] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development. Springer, 2004.

[38] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker blast. STTT, 9(5–6):505–525, 2007.

[39] Philip Bille. A survey on tree edit distance and related problems. Theor.
Comput. Sci., 337(1–3):217–239, 2005.

[40] Sascha Böhme, K. Rustan M. Leino, and Burkhart Wolff.
HOL-Boogie—an interactive prover for the Boogie program-verifier. In
Otmane Aı̈t Mohamed, César Muñoz, and Sofiène Tahar, editors,
TPHOLs, volume 5170 of Lecture Notes in Computer Science, pages
150–166. Springer, 2008.

[41] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François
Yergeau, and John Cowan. Extensible markup language (XML) 1.1.
http://www.w3.org/TR/xml11/.

[42] Bruno Buchberger, Adrian Craciun, Tudor Jebelean, Laura Kovács, Temur
Kutsia, Koji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, and
Markus Rosenkranz. Theorema: Towards computer-aided mathematical
theory exploration. J. Applied Logic, 4(4):470–504, 2006.

[43] Adam L. Buchsbaum, Loukas Georgiadis, Haim Kaplan, Anne Rogers,
Robert Endre Tarjan, and Jeffery Westbrook. Linear-time algorithms for
dominators and other path-evaluation problems. SIAM J. Comput.,
38(4):1533–1573, 2008.

[44] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R.
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview
of JML tools and applications. STTT, 7(3):212–232, 2005.

134

http://www.w3.org/TR/xml11/

[45] Patrice Chalin. Early detection of JML specification errors using
ESC/Java2. In Proceedings of the 2006 conference on Specification and
verification of component-based systems, page 32. ACM, 2006.

[46] Craig Chambers and Gary T. Leavens. Typechecking and modules for
multi-methods. In OOPSLA, pages 1–15, 1994.

[47] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and
Armando Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, CAV,
volume 2404 of Lecture Notes in Computer Science, pages 359–364.
Springer, 2002.

[48] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT Press, 1999.

[49] Curtis Clifton, Todd D. Millstein, Gary T. Leavens, and Craig Chambers.
MultiJava: Design rationale, compiler implementation, and applications.
ACM Trans. Program. Lang. Syst., 28(3):517–575, 2006.

[50] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michał Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A practical system for verifying concurrent C. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, TPHOLs,
volume 5674 of Lecture Notes in Computer Science, pages 23–42.
Springer, 2009.

[51] David R. Cok. Reasoning with specifications containing method calls and
model fields. Journal of Object Technology, 4(8):77–103, 2005.

[52] David R. Cok and Joseph Kiniry. Esc/java2: Uniting esc/java and jml. In
Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and
Traian Muntean, editors, CASSIS, volume 3362 of Lecture Notes in
Computer Science, pages 108–128. Springer, 2004.

[53] Stephen A. Cook. The complexity of theorem-proving procedures. In
STOC, pages 151–158. ACM, 1971.

[54] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A simple, fast
dominance algorithm.
http://www.cs.rice.edu/~keith/EMBED/dom.pdf, 2000.

[55] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, pages 238–252, 1977.

135

http://www.cs.rice.edu/~keith/EMBED/dom.pdf

[56] William Craig. Three uses of the Herbrand–Gentzen theorem in relating
model theory and proof theory. The Journal of Symbolic Logic,
22(3):269–285, September 1957.

[57] Werner Damm and Holger Hermanns, editors. Computer Aided
Verification, 19th International Conference, CAV 2007, Berlin, Germany,
July 3–7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer
Science. Springer, 2007.

[58] Ádám Darvas and Peter Müller. Reasoning about method calls in
interface specifications. Journal of Object Technology, 5(5):59–85, 2006.

[59] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Ramakrishnan and Rehof [151], pages 337–340.
http://research.microsoft.com/en-us/um/redmond/projects/z3.

[60] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann.
An optimal decomposition algorithm for tree edit distance. ACM
Transactions on Algorithms, 6(1), 2009.

[61] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, 2005.

[62] David D. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. Research Report 159, Compaq Systems
Research Center, 1998.

[63] Lee R. Dice. Measures of the amount of ecologic association between
species. Ecological Society of America, 26(3):297–302, July 1945.

[64] Edsger Wybe Dijkstra. The humble programmer. EWD340, Turing
Award Lecture, 1972.

[65] Edsger Wybe Dijkstra. Guarded commands, non-determinancy and a
calculus for the derivation of programs. In Friedrich L. Bauer and Klaus
Samelson, editors, Language Hierarchies and Interfaces, volume 46 of
Lecture Notes in Computer Science, pages 111–124. Springer, 1975.

[66] Dino Distefano and Matthew J. Parkinson. jStar: towards practical
verification for Java. In Gail E. Harris, editor, OOPSLA, pages 213–226.
ACM, 2008.

[67] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North,
and Gordon Woodhull. GraphViz—open source graph drawing tools. In
Graph Drawing, pages 483–484, 2001.

136

http://research.microsoft.com/en-us/um/redmond/projects/z3

[68] Andrei P. Ershov. On programming of arithmetic operations. Commun.
ACM, 1(8):3–9, 1958.

[69] Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular
hash-consing. In Andrew Kennedy and François Pottier, editors, ML,
pages 12–19. ACM, 2006.

[70] Jean-Christophe Filliâtre and Claude Marché. The
Why/Krakatoa/Caduceus platform for deductive program verification.
In Damm and Hermanns [57], pages 173–177.
http://why.lri.fr/.

[71] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java. In
PLDI, pages 234–245, 2002.

[72] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software
verification. In Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 191–202,
New York, NY, USA, 2002. ACM.

[73] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. In POPL, pages 193–205,
2001.

[74] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345,
1962.

[75] Robert W. Floyd. Assigning meanings to programs. Mathematical
aspects of computer science, 19(19–32):1, 1967.

[76] Edward Fredkin. Trie memory. Commun. ACM, 3:490–499, September
1960.

[77] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Adison–Wesley, 1995.

[78] Loukas Georgiadis, Robert Endre Tarjan, and Renato Fonseca F. Werneck.
Finding dominators in practice. J. Graph Algorithms Appl., 10(1):69–94,
2006.

[79] Oded Goldreich. Computational complexity: a conceptual perspective.
Cambridge University Press, 2008.

137

http://why.lri.fr/

[80] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs.
Elsevier, second edition, 2004.

[81] Google. Guava libraries.
http://code.google.com/p/guava-libraries/.

[82] Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik. Concrete
Mathematics. Adison–Wesley, 1998.

[83] Radu Grigore, Julien Charles, Fintan Fairmichael, and Joseph Kiniry.
Strongest postcondition of unstructured programs. In Formal Techniques
for Java-like Programs, pages 6:1–6:7, New York, NY, USA, 2009. ACM.

[84] Radu Grigore and Michał Moskal. Edit and verify. In Silvio Ranise,
editor, FTP, pages 101–112. University of Liverpool, September 2007.
ULCS-07-018.

[85] Christian Haack and Clément Hurlin. Resource usage protocols for
iterators. Journal of Object Technology, 8(4):55–83, 2009.

[86] Richard Wesley Hamming. Error detecting and error correcting codes.
The Bell System Technical Journal, 24(2), April 1950.

[87] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press,
2000.

[88] Nicholas J. A. Harvey. Algebraic algorithms for matching and matroid
problems. SIAM J. Comput., 39(2):679–702, 2009.

[89] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Marco A. A.
Sanvido. Extreme model checking. In Nachum Dershowitz, editor,
Verification: Theory and Practice, volume 2772 of Lecture Notes in
Computer Science, pages 332–358. Springer, 2003.

[90] Wim H. Hesselink. Programs, Recursion and Unbounded Choice.
Cambridge University Press, 1992.

[91] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[92] Jochen Hoenicke, K. Rustan M. Leino, Andreas Podelski, Martin Schäf,
and Thomas Wies. It’s doomed; we can prove it. In Ana Cavalcanti and
Dennis Dams, editors, FM, volume 5850 of Lecture Notes in Computer
Science, pages 338–353. Springer, 2009.

[93] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison–Wesley, 2003.

138

http://code.google.com/p/guava-libraries/

[94] Charles Hoover. A methodology for determining response time baselines.
In Int. CMG Conference, pages 85–94. Computer Measurement Group,
2006.

[95] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[96] David Hovemeyer and William Pugh. Finding bugs is easy. In John M.
Vlissides and Douglas C. Schmidt, editors, OOPSLA Companion, pages
132–136. ACM, 2004.

[97] James W. Hunt and Thomas G. Szymanski. A fast algorithm for
computing longest subsequences. Commun. ACM, 20(5):350–353, 1977.

[98] Bart Jacobs and Frank Pissens. The VeriFast program verifier. Technical
Report CW-520, Department of Computer Science, Katholieke
Universiteit Leuven, Belgium, August 2008.
http://www.cs.kuleuven.be/~bartj/verifast/.

[99] Himanshu Jain. Verification using Satisfiability Checking, Predicate
Abstraction, and Craig Interpolation. PhD thesis, Carnegie Mellon
University, 2008.

[100] Perry R. James and Patrice Chalin. Faster and more complete extended
static checking for the Java Modeling Language. J. Autom. Reasoning,
44(1–2):145–174, 2010.

[101] Mikolás Janota, Radu Grigore, and Michal Moskał. Reachability analysis
for annotated code. In Arnd Poetzsch-Heffter, editor, SAVCBS, pages
23–30. ACM, 2007.

[102] Mikoláš Janota, Fintan Fairmichael, Viliam Holub, Radu Grigore, Julien
Charles, Dermot Cochran, and Joseph R. Kiniry. CLOPS: A DSL for
command line options. In Walid Mohamed Taha, editor, DSL, volume
5658 of Lecture Notes in Computer Science, pages 187–210. Springer,
2009.

[103] Ranjit Jhala and Kenneth L. McMillan. A practical and complete
approach to predicate refinement. In Holger Hermanns and Jens
Palsberg, editors, TACAS, volume 3920 of Lecture Notes in Computer
Science, pages 459–473. Springer, 2006.

[104] Richard M. Karp. Reducibility among combinatorial problems.
Complexity of computer computations, 43:85–103, 1972.

139

http://www.cs.kuleuven.be/~bartj/verifast/

[105] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors.
Computer-aided reasoning: ACL2 case studies. Springer, 2000.

[106] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, 1976.

[107] Stephen Cole Kleene. Representation of Events in Nerve Nets and Finite
Automata. RAND Corporation, August 1951.

[108] Donald Ervin Knuth. The Art of Computer Programming, Volume I:
Fundamental Algorithms. Addison–Wesley, 1968.

[109] Donald Ervin Knuth. Computer programming as an art. Commun. ACM,
17(12):667–673, 1974.

[110] Donald Ervin Knuth. Postscript about NP-hard problems. SIGACT
News, 6(2):15–16, 1974.

[111] Donald Ervin Knuth. The TEXbook. American Mathematical Society and
Addison–Wesley, 1986.

[112] Donald Ervin Knuth. The Stanford GraphBase: A platform for
combinatorial algorithms. In SODA, pages 41–43, 1993.

[113] H. W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955.

[114] Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of
well-founded linked lists. In J. Gregory Morrisett and Simon
Peyton Jones, editors, POPL, pages 115–126. ACM, 2006.
http://research.microsoft.com/en-us/projects/havoc.

[115] Gary Leavens, Albert Baker, and Clyde Ruby. Preliminary design of JML:
a behavioral interface specification language for Java. ACM SIGSOFT
Software Engineering Notes, 31(3):1–38, 2006.
http://www.eecs.ucf.edu/~leavens/JML/.

[116] Gary T. Leavens, David A. Naumann, and Stan Rosenberg. Preliminary
definition of Core JML. Technical report, Stevens Institute of Technology,
2006.

[117] K. Rustan M. Leino. Efficient weakest preconditions. Inf. Process. Lett.,
93(6):281–288, 2005.

[118] K. Rustan M. Leino. This is Boogie 2. KRML 178, 2008.

140

http://research.microsoft.com/en-us/projects/havoc
http://www.eecs.ucf.edu/~leavens/JML/

[119] K. Rustan M. Leino and Ronald Middelkoop. Proving consistency of
pure methods and model fields. In Marsha Chechik and Martin Wirsing,
editors, FASE, volume 5503 of Lecture Notes in Computer Science, pages
231–245. Springer, 2009.

[120] K. Rustan M. Leino, Todd D. Millstein, and James B. Saxe. Generating
error traces from verification-condition counterexamples. Sci. Comput.
Program., 55(1–3):209–226, 2005.

[121] K. Rustan M. Leino and Rosemary Monahan. Automatic verification of
textbook programs that use comprehensions. In Workshop on Formal
Techniques for Java-like Programs (FTfJP). Citeseer, 2007.

[122] K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate
verification language: Design and logical encoding. In Javier Esparza and
Rupak Majumdar, editors, TACAS, volume 6015 of Lecture Notes in
Computer Science, pages 312–327. Springer, 2010.

[123] Karl Lermer, Colin J. Fidge, and Ian J. Hayes. Formal semantics for
program paths. Electr. Notes Theor. Comput. Sci., 78, 2003.

[124] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009.

[125] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Cybernetics and Control Theory, 10(8):707–710,
February 1966.

[126] Fangzhen Lin. On strongest necessary and weakest sufficient conditions.
In KR, pages 167–175, 2000.

[127] Zdravko Markov and Daniel T. Larose. Data mining the Web: uncovering
patterns in Web content, structure, and usage. Wiley-Interscience, 2007.

[128] Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Formal
verification of the heap manager of an operating system using separation
logic. In Zhiming Liu and Jifeng He, editors, ICFEM, volume 4260 of
Lecture Notes in Computer Science, pages 400–419. Springer, 2006.

[129] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part i. Commun. ACM, 3(4):184–195, 1960.

[130] John McCarthy. A basis for a mathematical theory of computation,
preliminary report. AFIPS Joint Computer Conferences, pages 225–238,
1961.

141

[131] Kenneth L. McMillan. Applications of craig interpolants in model
checking. In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS,
volume 3440 of Lecture Notes in Computer Science, pages 1–12. Springer,
2005.

[132] Kenneth L. McMillan. Quantified invariant generation using an
interpolating saturation prover. In Ramakrishnan and Rehof [151], pages
413–427.

[133] Microsoft. Code contracts.
http://research.microsoft.com/en-us/projects/contracts/.

[134] J Strother Moore. A mechanically verified language implementation. J.
Autom. Reasoning, 5(4):461–492, 1989.

[135] J Strother Moore. Inductive assertions and operational semantics. STTT,
8(4–5):359–371, 2006.

[136] Michał Moskal. Rocket-fast proof checking for SMT solvers. In
Ramakrishnan and Rehof [151], pages 486–500.

[137] Madanlal Musuvathi, Shaz Qadeer, and Thomas Ball. CHESS: A
systematic testing tool for concurrent software. Technical Report 149,
Microsoft Research, 2007.

[138] George C. Necula. Translation validation for an optimizing compiler. In
PLDI, pages 83–94, 2000.

[139] Greg Nelson and Derek C. Oppen. Fast decision procedures based on
congruence closure. J. ACM, 27(2):356–364, 1980.

[140] Tobias Nipkow, editor. Isabelle/HOL: a Proof Assistant for Higher-order
Logic. Springer, 2002.

[141] Frederick M. Noad. The complete idiot’s guide to playing the guitar.
Alpha Books, second edition, 2002.

[142] Diego Novillo. From source to binary: The inner workings of GCC. The
Red Hat Magazine, December 2004.
http://www.redhat.com/magazine/002dec04/features/gcc/.

[143] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, CADE, volume 607 of
Lecture Notes in Computer Science, pages 748–752. Springer, 1992.

[144] Terence John Parr and Russell W. Quong. ANTLR: A predicated-LL(k)
parser generator. Softw., Pract. Exper., 25(7):789–810, 1995.

142

http://research.microsoft.com/en-us/projects/contracts/
http://www.redhat.com/magazine/002dec04/features/gcc/

[145] Simon Peyton-Jones. How to write a good research paper.
http://research.microsoft.com/en-us/um/people/simonpj/

papers/giving-a-talk/writing-a-paper-slides.pdf.

[146] Simon Peyton Jones, editor. Haskell 98 Language and Libraries — The
Revised Report. Cambridge University Press, Cambridge, England, 2003.

[147] Gordon D. Plotkin. A structural approach to operational semantics, 1981.

[148] Gordon D. Plotkin. The origins of structural operational semantics. J.
Log. Algebr. Program., 60-61:3–15, 2004.

[149] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation.
In Bernhard Steffen, editor, TACAS, volume 1384 of Lecture Notes in
Computer Science, pages 151–166. Springer, 1998.

[150] Vaughan Pratt. Enriched categories and the Floyd–Warshall connection.
In Proc. First International Conference on Algebraic Methodology and
Software Technology, Iowa City, pages 177–180. Citeseer, 1989.

[151] C. R. Ramakrishnan and Jakob Rehof, editors. Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer
Science. Springer, 2008.

[152] Didier Rémy. Using, understanding, and unraveling the OCaml
language. from practice to theory and vice versa. In Gilles Barthe, Peter
Dybjer, Luis Pinto, and João Saraiva, editors, APPSEM, volume 2395 of
Lecture Notes in Computer Science, pages 413–536. Springer, 2000.

[153] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74. IEEE Computer Society, 2002.

[154] Martin C. Rinard and Darko Marinov. Credible compilation with
pointers. In Proceedings of the Workshop on Run-Time Result
Verification. Citeseer, 1999.

[155] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and
highly-modular software model checking framework. In ESEC /
SIGSOFT FSE, pages 267–276. ACM, 2003.

[156] John Alan Robinson and Andrei Voronkov, editors. Handbook of
Automated Reasoning, volume 1. Gulf Professional Publishing, 2001.

143

http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/writing-a-paper-slides.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/writing-a-paper-slides.pdf

[157] John Alan Robinson and Andrei Voronkov, editors. Handbook of
Automated Reasoning, volume 2. Gulf Professional Publishing, 2001.

[158] Bernard Roy. Transitivité et connexité. C. R. Acad. Sci. Paris, 249:216–218,
1959.

[159] Arsenii Rudich, Ádám Darvas, and Peter Müller. Checking
well-formedness of pure-method specifications. In Jorge Cuéllar, T. S. E.
Maibaum, and Kaisa Sere, editors, FM, volume 5014 of Lecture Notes in
Computer Science, pages 68–83. Springer, 2008.

[160] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A comparison of
bug finding tools for Java. In ISSRE, pages 245–256. IEEE Computer
Society, 2004.

[161] Mayer D. Schwartz, Norman M. Delisle, and Vimal S. Begwani.
Incremental compilation in Magpie. In SIGPLAN Symposium on
Compiler Construction, pages 122–131. ACM, 1984.

[162] Raymond M. Smullyan. Theory of formal systems. Princeton University
Press, 1961.

[163] Norman E. Steenrod, Paul R. Halmos, Menahem M. Schiffer, and Jean A.
Dieudonne. How to Write Mathematics. American Mathematical Society,
1973.

[164] Alexander J. Summers and Sophia Drossopoulou. Considerate reasoning
and the Composite design pattern. In Gilles Barthe and Manuel V.
Hermenegildo, editors, VMCAI, volume 5944 of Lecture Notes in
Computer Science, pages 328–344. Springer, 2010.

[165] Kuo-Chung Tai. The tree-to-tree correction problem. J. ACM,
26(3):422–433, 1979.

[166] Microsoft The Spec] Project. The Boogie benchmarks, October 2006.
http://research.microsoft.com/en-us/projects/specsharp/.

[167] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick
Lam, and Vijay Sundaresan. Soot—a Java bytecode optimization
framework. In Stephen A. MacKay and J. Howard Johnson, editors,
CASCON, page 13. IBM, 1999.

[168] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and
JML. In Tiziana Margaria and Wang Yi, editors, TACAS, volume 2031 of
Lecture Notes in Computer Science, pages 299–312. Springer, 2001. Tool
not available online.

144

http://research.microsoft.com/en-us/projects/specsharp/

[169] Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and
implementation of an efficient priority queue. Mathematical Systems
Theory, 10:99–127, 1977.

[170] Peter Vanbroekhoven, Gerda Janssens, Maurice Bruynooghe, and
Francky Catthoor. A practical dynamic single assignment transformation.
ACM Trans. Design Autom. Electr. Syst., 12(4), 2007.

[171] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and
Flavio Lerda. Model checking programs. Autom. Softw. Eng.,
10(2):203–232, 2003.

[172] Frédéric Vogels, Bart Jacobs, and Frank Piessens. A machine-checked
soundness proof for an efficient verification condition generator. In
Proceedings of the 2010 ACM symposium on Applied Computing, 2010.

[173] Philip Wadler. The expression problem.
http://www.daimi.au.dk/~madst/tool/papers/expression.txt,
1998.

[174] Philip Wadler. Proofs are programs: 19th century logic and 21st century
computing. Dr. Dobbs Journal, December 2000. Special supplement on
Software in the 21st century.

[175] Jim Waldo. On system design. In Peri L. Tarr and William R. Cook,
editors, OOPSLA, pages 467–480. ACM, 2006.

[176] Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12,
1962.

[177] William E. Winkler. String comparator metrics and enchanced decision
rules in the Fellegi–Sunter model of record linkage. In Proceedings of the
Section on Survey Research Methods. American Statistical Association,
1990.

145

http://www.daimi.au.dk/~madst/tool/papers/expression.txt

Index

adjacent nodes, 48
annotation, 70
auxiliary information, 20
axiom, 4

bipartite graph, 50

calculus, 4
completeness, 4, 22, 71
complexity, 47
consistency, 4
copy statement, 51
correctness, 15, 71

desugaring, 33
dominator, 117

edit operation, 86
equivalence of predicates, 16
evaluation, 4
execution, 14
expression, 13

flowgraph, 32
two-chain, 64

hash-consing, 41
Hoare triple, 69

independent nodes, 48
interpolant, 89, 104

matching, 50
model, 4

nondeterminism, 11, 14

NP-complete, 48, 62, 63
NP-hard, 48

operational semantics, 13
oracle, 48

passive form, 52
copy optimal, 53
distinct-version, 53
increasing-version, 53
version-optimal, 53

passive program, 51
path copying, 29
path string, 104
predicate, 13
problem

computational, 46
decision, 47
longest increasing subsequence,

49
maximum bipartite matching, 50
maximum independent node set,

49
open, 8, 63, 66
optimization, 47
semantic reachability, 115

proof, 4
prune, 88
pseudo-flowgraph, 32

read node, 50
read-version function, 52
reduction, 48
Roy–Warshall algorithm, 1, 8

146

semantic reachability, 112
sort, 34
soundness, 4, 21
store, 13
strongest postcondition, 45, 74
stuck execution, 11, 15
subsequence, 49
symbol table, 20, 31

term, 77
theory, 4

valid solution, 46
validity, 4

of predicates, 16
valuation, 4
value, 13
variable, 13
version of variable, 51
violated assertion, 14

weakest precondition, 43, 74
witness, 52
worst case, 47
write node, 50
write-version function, 52

147

	Introduction
	Motivation
	History
	Related Work
	A Guided Tour

	The Core Boogie
	Design Overview
	An Example Run
	Pipeline
	The Abstract Syntax Tree and its Visitors
	Auxiliary Information
	Verification Condition Generation
	The Prover Backend
	Other Generated Code
	Related Work

	Optimal Passive Form
	Background
	The Definition of Passive Form
	The Version-Optimal Passive Form
	The Copy-Optimal Passive Form
	Conclusions
	Related Work

	Strongest Postcondition versus Weakest Precondition
	Hoare Logic for Core Boogie
	Predicate Transformers
	Replacing Assignments by Assumptions
	Verification Condition Size
	Experiments
	Conclusions
	Related Work

	Edit and Verify
	Motivation
	Overview
	Simplifying SMT Formulas
	Correspondence between Trees
	Example
	Conclusions
	Related Work

	Semantic Reachability Analysis
	Motivation
	Theory
	Algorithm
	Case Study
	Conclusions and Related Work

	Conclusions
	Notation

