
jStar-eclipse: an IDE for Automated Verification of
Java Programs

Daiva Naudžiūnienė
University of Cambridge
da319@cam.ac.uk

Matko Botinčan
University of Cambridge
mb741@cam.ac.uk

Dino Distefano
Queen Mary Univ. of London

and Monoidics Ltd
ddino@eecs.qmul.ac.uk

Mike Dodds
University of Cambridge
md466@cam.ac.uk

Radu Grigore
Queen Mary Univ. of London

radu.grigore@eecs.qmul.ac.uk

Matthew J. Parkinson
Microsoft Research

mattpark@microsoft.com

ABSTRACT
jStar is a tool for automatically verifying Java programs. It
uses separation logic to support abstract reasoning about ob-
ject specifications. jStar can verify a number of challenging
design patterns, including Subject/Observer, Visitor, Fac-
tory and Pooling. However, to use jStar one has to deal
with a family of command-line tools that expect specifica-
tions in separate files and diagnose the errors by inspecting
the text output from these tools.

In this paper we present a plug-in, called jStar-eclipse,
allowing programmers to use jStar from within Eclipse IDE.
Our plug-in allows writing method contracts in Java source
files in form of Java annotations. It automatically translates
Java annotations into jStar specifications and propagates
errors reported by jStar back to Eclipse, pinpointing the
errors to the locations in source files. This way the plug-in
ensures an overall better user experience when working with
jStar. Our end goal is to make automated verification based
on separation logic accessible to a broader audience.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods

General Terms
Verification

Keywords
Automated verification, Separation logic, Java, Eclipse

1. INTRODUCTION
Software verification helps in developing more reliable pro-

grams. Although initially focused on verifying low-level mis-
sion critical programs, a variety of techniques and tools have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

been developed recently for verifying common everyday pro-
grams written in object-oriented programming languages [2,
4, 6]. However, bringing such techniques and tools to be-
come a part of the standard software development process
has proved difficult.

In recent years, separation logic has emerged as a highly
successful approach to software verification. Separation logic
enables concise specifications and the verification techniques
based on it were shown to scale to large code bases such as
Linux kernel [5]. However, these verification efforts have
universally been led by the developers of the tools. As a
result, in comparison to other approaches, e.g. Spec# [1],
there has been little or no effort to make separation logic
tools accessible to a broader audience of software developers.

jStar [6] is a verification tool for Java programs based on
principles of design-by-contract and separation logic. The
aim of jStar has been to generalise and simplify the ver-
ification of Java programs. It abstracts away the details
of objects implementation and can verify tricky Java pro-
grams such as commonly used design patterns, including
Subject/Observer, Visitor, Factory and Pooling [7].

In this paper, we pursue the jStar agenda further by devel-
oping a developer-friendly interface to jStar. To this end, we
have built a plug-in for the widely used Eclipse development
environment. Our plug-in allows writing function contracts
within the source code. Each time a developer saves the
file, the plug-in maps the annotated Java programs to jStar
specifications, and propagates jStar error reports back to the
original Java program, enabling error diagnosis. This makes
writing a program and verifying it in one place possible.
We present jStar-eclipse by demonstrating two examples:
a simple binary tree example and a more interesting and
challenging example using Iterator and Decorator patterns.

2. JSTAR-ECLIPSE
Fig. 1 shows the high level structure of jStar-eclipse and

its workflow. We write contracts for Java class methods as
Java annotations (@Spec in Fig. 1). The contracts are func-
tion pre- and post-conditions written using our syntax based
on separation logic. For a given Java file we extract these
contracts to a specification file. Using the Soot tool [10] we
convert the Java program into the Jimple intermediate rep-
resentation (which is easier to analyse than Java). Finally
we pass the specifications and the Jimple file to jStar which
tries to verify the code against the specification.

Figure 1: jStar-eclipse and its workflow

jStar is built on top of the separation logic based verifica-
tion framework coreStar [3]. In addition to specifications
and program code, coreStar takes collection of logic and
abstraction rules (the former used by the internal theorem
prover, the latter used by the internal abstract interpreter).
jStar translates Jimple programs to the coreStar intermedi-
ate language. coreStar performs symbolic execution of the
input program in a fix-point loop, applying abstraction and
synthesising loop invariants automatically to allow termina-
tion. At the end, it checks whether each symbolic execution
path satisfies the postcondition. Responses, such as error
messages, are returned to the Eclipse plug-in.

2.1 New highlights of jStar-eclipse
To increase the productivity of the user, jStar-eclipse in-

troduces several new valuable features which improve and
simplify the verification process done in the jStar command
line tool.

Specifications in the source file.
Java annotations are a natural way to write specifications:

their purpose is to add metadata to Java source code. Writ-
ing specifications usually requires looking at the code that
is being specified. Having them contained in the source
code makes the verification process easier. After writing
the method with its specification and saving the source file,
jStar-eclipse automatically checks if the code satisfies its
specification and shows an error message if it does not.

Error messages for verification failures.
One of the key difficulties in the verification process is

understanding why the verification has failed. jStar itself
returns only the part of its internal representation that it
failed to verify. Relating this error back to the original Java
program is difficult for non-experts. jStar-eclipse simpli-
fies this debugging burden. When Java code is converted
to the Jimple language, the Java source code positions are
saved. This information is also kept when translating Jim-
ple into the coreStar input language. Hence in the case of

a counterexample we are able to locate the position of the
Java code causing the error. The problematic source code is
underlined in jStar-eclipse. Hovering over underlined code
pops up a tooltip containing the error description.

Project-based organisation.
The files containing specifications, logic and abstraction

rules are organised in the same way as Java source files. This
simplifies navigation and file handling for larger projects.

3. SEPARATION LOGIC
The key benefit of separation logic is in its support for lo-

cal reasoning: when we are giving a specification of a piece
of code, we only need to supply information about what the
code actually uses and need not to worry about the context
the code is used in. To support local reasoning, separation
logic introduces a new logical connective, the separating con-
junction *, which represents disjointness of resources. The
formula P * Q asserts that we can split resources into two
disjoint parts: one of them satisfying P and the other one Q.
If we have a program C with a specification {P} C {Q}, then
we can extend P and Q by arbitrary resource F that C does
not access. This is known as the frame rule.

The specification {P} C {Q} asserts that if we start at
the state satisfying precondition P and the program C ter-
minates then the resulting state satisfies postcondition Q.
We can specify postconditions for exceptions as {P} C {Q}

{exception class: E}. If an exception is thrown, we end
up in a state satisfying postcondition E.

jStar uses abstract predicates to reason about object orien-
ted programs [8, 9]. Abstract predicates can represent en-
capsulated properties of an object by a separation logic for-
mula. Writing specifications in terms of abstract predicates
does not expose the inner structure outside the class and
thus provides us with modular reasoning and information
hiding. For example, for the Tree class given in Fig. 2 we
define an abstract predicate Tree(x,{sum=s}) which encap-
sulates the inner structure of the object.

4. EXAMPLES
In order to demonstrate how to verify code with jStar-

eclipse we describe two examples. We start with a simple
binary tree example and continue with a more challenging
iterator example taken from the Apache Commons library.

4.1 Binary tree
Let us consider a class Tree representing a binary tree.

Each node in a Tree object has left and right subtrees and
a value. The method treesum() computes the total sum of
the whole tree. Fig. 2 gives the source code, annotated with
jStar-eclipse specifications.

We first define an abstract predicate Tree(x,{sum=s})

representing a non-empty binary tree at location x, with
property sum. The definition of Tree is given in the class an-
notation @Predicate. This annotation asserts that the Tree

object has three fields: an integer field value that stores
some value _v and two subtrees left and right that are
either null, or store some values _l and _r. We also have
a derived predicate TreeOrNull(x,{sum=s}), meaning that
either x=null (i.e, it is an empty tree) or Tree(x,{sum=s}).
To constrain _l and _r to be trees we use the TreeOrNull

@Predicate(predicate="Tree(x,{sum=s})",
formula = "x.value |-> _v *

x.left |-> _l * x.right |-> _r *
TreeOrNull(_l,{sum=_ls}) *
TreeOrNull(_r,{sum=_rs}) *
s=((_v+_ls)+_rs)")

public class Tree {
int value; Tree left, right;

@Spec(pre="TreeOrNull(l,{sum=_ls}) *
TreeOrNull(r,{sum=_rs})",

post="Tree $(this,{sum=((v+_ls)+_rs)})")
public Tree(int v, Tree l, Tree r) {
super(); value = v; left = l; right = r;

}

@Spec(pre="Tree $(this,{sum=_s})", post="return=_s")
int treesum() {
int r = value;
if (left != null) r += left.treesum();
if (right != null) r += right.treesum();
return r;

}
}

Figure 2: Binary tree

predicate. Finally we assert that sum is equal to the sum of
the tree, i.e., its value plus the sums of the subtrees.

Method specifications are written using the @Spec annota-
tion. The specification of the class constructor asserts that,
given two trees l and r, the constructor returns a tree with
sum that is equal to the sum of the given trees and v. The
specification of the method treesum() says that given a tree,
it returns the value of the sum of the tree. By the definition
of the predicate Tree we know that the returned value is the
sum of the whole tree. These are all annotations needed to
verify this example with jStar-eclipse.

4.2 Iterator
The second example we consider uses the Iterator and

Decorator design patterns [7]. Fig. 3 gives the source code of
the FilterIterator class1 from Apache Commons library2.
The FilterIterator decorates another iterator by filter-
ing its collection values with a given predicate. It imple-
ments the java.util.Iterator interface with two methods:
hasNext(), which returns true if there are more elements in
the filtered collection, and next(), which returns the next
element from the filtered collection if it exists, otherwise it
throws an exception. To implement the interface, the class
has two auxiliary fields: nextObject and nextObjectSet.
nextObject works as a buffer of one cell corresponding to
the next element in the collection. nextObjectSet says if the
buffer is empty or full. We can have two possible situations
as shown in Fig. 4. If nextObjectSet is true, then the first
element of the filtered collection is contained in nextObject,
otherwise, we do not use nextObject.

Due to limited space, we use the shorthand notation
method name: {precondition} {postcondition} to write
specifications in this example. Before specifying methods
of the FilterIterator class, we give the specification of

1For simplicity we have omitted constructors, setters, get-
ters and remove function.
2http://commons.apache.org/collections/

java.util.Iterator in Fig. 5. We use the abstract pred-
icate It(this,{collection=_c}) to abstract away the in-
terface from the implementation. The specification of has-
Next() says that it does not change the collection of the
iterator, and the returned value is true if the collection has
at least one element, otherwise it is false. The specifica-
tion of next() says that the method returns the first element
from the collection. However, it throws NoSuchElementEx-

ception if the collection is empty.
We also need the specification of the Predicate interface:

interface Predicate {
boolean evaluate(Object object):
{Pred(this,{function=_f})}
{Pred(this,{function=_f}) * return=satisfies(_f,object)}

}

Now we can specify the FilterIterator class. First we
define the abstract predicate It3 for this class:
It(x, {collection=c; under=i; underCollection=uc; pred=p;

predFn=f; nextOb=nob; nextObSet=nobs}) =
x.iterator |-> i * x.predicate |-> p *
x.nextObject |-> nob * x.nextObjectSet |-> nobs *
It(i, {collection=uc}) * i != null *
Pred(p, {function=f}) * p != null *
((nobs = true * c = cons(nob, _ct) *
(Filter(f, uc, _ct)) * satisfies(f, nob) = true)
||
(nobs = false * Filter(f, uc, c))))

The definition says that we have four fields: iterator,
predicate, nextObject, nextObjectSet. The field itera-

tor satisfies java.util.Iterator interface, the field pred-

icate satisfies Predicate interface. The last two disjuncts
encode the two states in Fig. 4. Filter(f, c1, c2) means
that if we filter the collection c1 with the function f we get
the collectionc2. Specifications for FilterIterator meth-
ods are given in Fig. 6. The specification of hasNext() says
that either the method returns true and the next object
is set, or the method returns false, the next object is not
set, and the collection is empty. The specification of next()
says that we return the first element of the collection or we
get the NoSuchElementException if the collection is empty.
And finally, the specification of setNextObject() restricts
calling this method only when nextObjectSet is false. The
method tries to set next object and returns true if it suc-
ceeds. If it returns false, it must be that the underlying
collection is empty.

We have used mathematical objects in the specifications,
e.g. cons, satisfies, Filter. Here we give just their in-
formal meanings, however to use them in the tool we have
to formally define them using logic rules. Recall our infor-
mal definition of Filter(f, c, fc) which says that filtering
the collection c with the functionf we getfc. An example of
a logic rule is an axiom saying that filtering an empty collec-
tion gives us an empty collection: `Filter(f, empty, empty).

5. CONCLUSIONS
The aim of jStar-eclipse was to integrate jStar within

an IDE in order to support performing verification together
with code writing. We have collected all that is required by
the jStar command-line tool into one convenient framework.
That is (1) specifications are included in the source file and
automatically converted to jStar input specification files, (2)
Java source is automatically converted into the intermedi-
ate representation used by jStar, and (3) error messages are
3For readability we use the shorthand notation
It(x,{c,i,uc,p,f,nob,nobs}) later in the paper.

public class FilterIterator implements Iterator {
private Iterator iterator;
private Predicate predicate;
private Object nextObject;
private boolean nextObjectSet = false;

public boolean hasNext() {
if (nextObjectSet) { return true;}
else { return setNextObject(); }

}

public Object next() {
if (!nextObjectSet) {
if (!setNextObject())
{ throw new NoSuchElementException(); }

}
nextObjectSet = false;
return nextObject;

}

private boolean setNextObject() {
while (iterator.hasNext()) {
Object object = iterator.next();
if (predicate.evaluate(object)) {
nextObject = object;
nextObjectSet = true;
return true;

}
}
return false;

}
}

Figure 3: FilterIterator class

next
object underlying collection

filtered collection

next
object underlying collection

filtered collection

(1) nextObjectSet = true (2) nextObjectSet = false

Figure 4: FilterIterator states

interface java.util.Iterator {
boolean hasNext():
{It $(this,{collection=_c})}
{It $(this,{collection=_c}) *
((_c=empty * return=false) ||
(_c=cons(_x,_ct) * return=true))}

java.lang.Object next():
{It $(this,{collection=_c})}
{It $(this,{collection=_ct}) *
_c=cons(_x,_ct) * return=_x}
{NoSuchElementException:
It $(this,{collection=empty}) * _c=empty}

}

Figure 5: Specification of java.util.Iterator

presented directly on top of the Java source code. Though
jStar-eclipse is still at an early stage of development, al-
ready these features greatly simplify the workflow with jS-
tar. We see development of jStar-eclipse as the first step

class FilterIterator {
boolean hasNext():
{It $(this,{_c;_i;_;_p;_f;_;_})}
{It $(this,{_c;_i;_;_p;_f;_nob;_nobs}) *
((_c=empty * return=false * _nobs=false) ||
(_c=cons(_nob, _ct) * _nobs=true * return=true))}

java.lang.Object next():
{It $(this,{_c;_i;_;_p;_f;_;_})}
{It $(this,{_ct;_i;_;_p;_f;_;false}) *
_c=cons(_x, _ct) * return=_x}
{NoSuchElementException :
It $(this,{empty;_i;empty;_p;_f;_;false}) * _c=empty}

boolean setNextObject() static:
{It $FilterIterator(this,{_c;_i;_;_p;_f;_;false})}
{It $FilterIterator(this,{_c;_i;_uc;_p;_f;_;_nobs}) *
(return=_nobs * (return=true || _uc=empty))}

}

Figure 6: Specification of FilterIterator

towards a user-friendly verification tool based on jStar, the
first one that aims to bring separation logic based verifica-
tion to a daily mainstream development.

Acknowledgments
We acknowledge funding from EPSRC H011749 (Grigore
and Distefano) and H010815 (Dodds, Naudžiūnienė and Parkin-
son) and RAEng research fellowships (Distefano and Parkin-
son). Parkinson’s work on jStar was carried out while at the
University of Cambridge.

6. REFERENCES
[1] M. Barnett, M. Fähndrich, K. Leino, P. Müller,

W. Schulte, and H. Venter. Specification and
verification: The spec# experience. Communications
of the ACM, 54(6):81–91, 2011.

[2] M. Barnett, K. Leino, and W. Schulte. The Spec#

programming system: An overview. CASSIS, 2005.

[3] M. Botinčan, D. Distefano, M. Dodds, R. Grigore,
D. Naudžiūnienė, and M. J. Parkinson. coreStar: The
Core of jStar. In Boogie 2011: 1st Intl. Workshop on
Intermediate Verification Languages, 2011.

[4] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. Leavens, K. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on
STTT, 7(3):212–232, 2005.

[5] C. Calcagno, D. Distefano, P. W. O’Hearn, and
H. Yang. Compositional shape analysis by means of
BI-abduction. In POPL, 2009.

[6] D. Distefano and M. J. Parkinson. jStar: Towards
practical verification for Java. In OOPSLA, 2008.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison–Wesley, 1995.

[8] M. J. Parkinson and G. M. Bierman. Separation logic
and abstraction. In POPL, 2005.

[9] M. J. Parkinson and G. M. Bierman. Separation logic,
abstraction and inheritance. In POPL, 2008.

[10] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot-a Java optimization
framework. In CASCON, 1999.

	Introduction
	jStar-eclipse
	New highlights of jStar-eclipse

	Separation Logic
	Examples
	Binary tree
	Iterator

	Conclusions
	References

