
PrideMM:
A Solver for Relaxed Memory Models

Simon Cooksey1, Sarah Harris1, Mark Batty1, Radu Grigore1, and
Mikoláš Janota2

1 University of Kent, Canterbury
{sjc205,mjb211}@kent.ac.uk

2 IST/INESC-ID, University of Lisbon

Abstract. Relaxed memory models are notoriously delicate. To ease
their study, several ad hoc simulators have been developed for axiomatic
memory models. We show how axiomatic memory models can be simulated
using a solver for ∃SO. Further, we show how memory models based on
event structures can be simulated using a solver for MSO. Finally, we
present a solver for SO, built on top of QBF solvers.

1 Introduction

Understanding processor and language concurrency is an essential step in building
reliable systems. Formal modelling and simulation have exposed flaws [4,39,51,52]
and led to refinements [1, 10] in the official descriptions of concurrency in key
languages and processors. Current simulators rely on ad hoc algorithms [5,10,19]
or SAT solvers [53]. However, flaws in existing language concurrency models [9] –
where one must account for behaviour introduced through aggressive optimisation
– have led to a new class of models [27,29] that cannot be simulated with previous
ad hoc methods and fit awkwardly in the limited language of SAT, making
simulation unworkable.

This paper presents PrideMM, a tool that both simulates the more intricate
models of aggressively optimised concurrent languages and replicates the function-
ality of previous tools. PrideMM identifies second order (SO) logic as expressive
enough to capture the wider set of concurrency models, while restrictive enough
to enable automatic solving. PrideMM uses a new checker, built above rapidly
improving quantified boolean formula (QBF) solvers, that solves SO logic formulas
directly.

The following contributions underpin PrideMM:

1. we demonstrate simulation of existing models using a solver for ∃SO,

2. we present a model checker for SO, built on top of QBF solvers, and

3. we simulate the Jeffrey and Riely model – one of a new class of concurrency
models for optimised concurrent languages – using a solver for SO.

a: Rx 1

b: Wy 1

c: Ry 1

d: Wx 1

rf

rf
po po

initially x = 0, y = 0

r1 = x r2 = y

if (r1 == 1) if (r2 == 1)

{y = 1} {x = 1}
r1 == 1, r2 == 1 allowed?

acyclic(po ∪ rf)

Fig. 1: LB+ctrl, an axiomatic execution of it, and an axiom that forbids it.

1.1 Modelling Relaxed Memory Models

Processor speculation, memory-subsystem reordering and compiler optimisations
lead mainstream languages and processors to violate sequential consistency, a
model of memory where accesses are simply interleaved [33]. We say such systems
exhibit relaxed concurrency. Relaxed concurrency is commonly described in
an axiomatic model, where each program behaviour is represented as graph of
memory accesses, and a set of axioms filters forbidden execution graphs.

Herd is a simulator of axiomatic models that has been used extensively
to model processor, GPU, and language concurrency [5]. In Herd, the model
is expressed as a predicate on execution graphs, written in the propositional
relation calculus, and recorded in a .cat file. Figure 1 presents load buffering with
control dependencies (LB+ctrl), a small program called a litmus test constructed
to probe for a single relaxed behaviour, together with an execution graph and an
axiom as it would appear in a .cat file. LB+ctrl consists of two parallel threads
that read x (or y) and then conditionally write y (or x), with x and y initialised
to 0. The outcome 1/1 represents a relaxed behaviour, and is allowed in particular
by the current C++ standard, but forbidden under the SC, x86, Power and ARM
models. The graph of Figure 1 presents the execution in question, with memory
reads and writes as vertices (eliding the initialisation) and edges representing
program order (po) and the writes that each read reads from (rf). The axiom
of Figure 1 forbids the outcome 1/1 as the corresponding execution contains a
cycle in po ∪ rf . The SC, x86, Power and ARM models each include a variant of
this axiom, all forbidding 1/1.

Herd uses an ad hoc algorithm for judging whether an execution is allowed.
Its performance is surpassed by the Memalloy [53] tool built above SAT-based
Alloy, so it is clear that the judgement of axiomatic models can be expressed as a
SAT problem. Unfortunately, not all memory models fit the axiomatic paradigm.

Axiomatic models do not fit optimised languages. Languages like C++ and
Java perform dependency-removing optimisations that complicate their memory
models. For example, the second thread of the LB+false-dep test in Figure 2
can be optimised using common subexpression elimination to r2=y; x=1;. On
ARM and Power, this optimised code may be reordered, permitting the relaxed
outcome 1/1, whereas the syntactic dependency of the original would make
1/1 forbidden. It is common practice to use syntactic dependencies to enforce

2

initially x = 0, y = 0

r1 = x r2 = y

if (r1 == 1) if (r2 == 1)

{y = 1} {x = 1}
else

{x = 1}
r1 == 1, r2 == 1 allowed?

Init

a: Rx 0 b: Rx 1

c: Wy 1

d: Ry 0

e: Wx 1

f : Ry 1

g: Wx 1

ord

ord ord

ord

ord ord ord

conf conf

Fig. 2: LB+false-ctrl and the corresponding event structure.

ordering on hardware, but at the language level the optimiser removes these fake
dependencies.

The C++ standard is flawed because it describes an axiomatic language
model that cannot draw a distinction between the executions leading to outcome
1/1 in LB+dep and LB+false-dep: the details of other branches of control flow
have been stripped and they have precisely the same vertices and edges [9]

Event structures capture the necessary information. A new class of models
aims to fix this by ordering only real dependencies [27,29,42]. With a notable
exception [29], these models are based on event structures, where all paths of
control flow are represented in a single graph. Figure 2 presents the event structure
for LB+false-deps. Program order is captured by the ord relation. Conflict, the
conf edge, links events where only one can occur in an execution (the same holds
for their ord -successors). For example, on the left-hand thread, the load of x can
result in a read of value 0 (event a) or a read of value 1 (event b), but not both.
Conversely, two subgraphs unrelated by ord or conf , e.g. {a, b, c} and {d, e, f, g},
represent two threads in parallel execution.

It should be clear from the event structure in Figure 2 that regardless of
the value read from y in the right-hand thread, there is a write to x of value 1,
i.e. the apparent dependency from the load of y is fake and could be optimised
away. Memory models built above event structures can recognise this pattern
and permit relaxed execution.

The Jeffrey and Riely model. Jeffrey and Riely proposed a concurrency model
(henceforth referred to as J+R) built above event structures that correctly
identifies fake dependencies [27]. Conceptually, the model is related to the Java
memory model [36]: in both, one constructs an execution stepwise, adding only
memory events that can be justified from the previous steps. The sequence
captures a causal order and prevents cycles that could lead to thin-air values.
While Java is too strong, the J+R model allows writes that have fake dependencies
on a read to be justified before that read. To do this, the model recognises
confluence in the program structure: regardless of the execution path, the write
will always be made. This search across execution paths involves alternation
of quantification that current ad hoc and SAT-based tools cannot efficiently
simulate. The problem is amenable to the new breed of QBF solvers.

3

1.2 Solvers

The late 90’s brought about a surge of practical applications of SAT solvers [11,38].
QBF provides a more expressive language and therefore less burden on the modeler
but it is also inherently harder. Indeed, QBF is PSPACE-complete, whereas SAT
is “only” NP-complete. Initially QBF solving mainly focused on adapting SAT
techniques to quantifiers [56]. In the last decade, however, there has been a
prolific activity in the field leading to several independent paradigms. There
has been a remarkable progress in the area almost each year [7, 17, 18, 20, 25,
26, 30, 35, 41, 45–47, 49, 50]. This evolution has also been traced by the yearly
QBF competitions [43], see also [37]. These improvements suggest that it may be
beneficial to integrate modern QBF technology into formal verification tools.

We highlight the algorithm RAReQS [20,24] with its recent improvements [22].
The algorithm has exhibited highly competitive performance in formulas coming
from practical applications and with small number of quantifier levels. Hence,
RAReQS is a natural candidate for the problems targeted in this paper. Never-
theless, other solvers are also included in the evaluation (see § 6).

From practical perspective, it is important to mention the input format
to QBF solvers. Unlike in SAT, CNF input has been observed as extremely
harmful to QBF solving [6, 21, 55]. This has been reflected by recent efforts to
promote solvers that accept a circuit-like format QCIR [28]. Hence, QBF solvers
can be classified according to which of the two inputs they support. During
the experimental evaluation we have observed that the circuit-based solvers
dramatically outperform the CNF-based ones (see § 6).

We should mention that there are other tools dedicated to automated solving
in higher-order logic. Namely higher order model finders [13] or automated higher
order theorem provers [15]. Even though one could encode the problems considered
in this paper into those tools, their ultimate focus are mainly mathematical
theorems. Hence, applying these tools to our problems would likely lead to poor
performance: a scenario of a using a sledgehammer to crack a nut.

2 Overview

Figure 3 shows the architecture of our memory-model simulator. The input is LISA
code, and the output is a yes/no answer. LISA is a programming language that
has been designed for studying memory models [2]. This language enables writing
multi-threaded programs and ask questions about whether certain behaviours
are allowed. Using LISA as our input format enables a comparison with the
state-of-the-art memory-model simulator Herd [5]. The LISA frontend produces
an event structure [54]. Any event structure is trivially representable as a SO
logic structure, so the conversion is simple. The MM generator (memory-model
generator) produces a SO formula. We have a few interchangeable MM generators
(§4). For some memory models (§4.1, §4.2, §4.3), which Herd can handle as well,
the formula is in fact fixed and does not depend at all on the event structure. For
other memory models (such as § 4.4), the MM generator might need to look at

4

certain characteristics of the event structure (such as its size). Finally, both the
second-order structure and the second-order formula are fed into a solver, which
effectively simulates the program under the memory-model, and gives a verdict.

LISA code

LISA frontend event structure MM generator formula

converter SO structure SO solver

Fig. 3: From a LISA test case to a Y/N answer, given by the SO solver.

We build on prior work from two different areas – relaxed memory models,
and SAT/QBF solving: the LISA frontend comes from the Herd memory-model
simulator [5], the MM generators implement memory models that have been
previously proposed [27, 32], and the SO solver is based on a state-of-the-art
QBF solver [22]. Our main contribution to the area of relaxed memory models
is that we widen the class of memory models that can be efficiently simulated.
Our main contribution to SAT/QBF solving is that we widen the applicability of
such tools.

Applying SAT technology to simulate memory models has been tried be-
fore [53]. But, although it did lead to performance improvements, it did not
widen the class of models that can be efficiently simulated. We are able to do so
because of a key insight: relational second-order logic represents a sweet-spot in
the design space. On the one hand, it is expressive enough such that encoding
memory models is natural. On the other hand, it is simple enough such that it
can be solved efficiently, using emerging QBF technology.

Consider for example the sequentially consistent memory model. It is often
described by saying that there exists a reads-from relation rf and a coherence
order co such that the transitive closure of rf ∪co∪(rf −1; co)∪po is acyclic. Here,
po is the (fixed) program-order relation, and it is understood that co and rf satisfy
certain further axioms. In our setting, we describe the sequentially consistent
model as follows. We represent rf and co by existentially-quantified SO arity-2
variables Yco and Yrf , respectively. For example, to say (x, y) ∈ co, we use the
formula Yrf (x, y). The program order po is represented by an interpreted arity-2
symbol <. Then, the SO formula that represents rf ∪ co ∪ (rf −1; co) ∪ po is

R(y, z) := Yrf (y, z) ∨Yco(y, z) ∨ ∃x
(
Yrf (x, z) ∧Yco(x, y)

)
∨ (y < z) (1)

The definition from above should be interpreted as a macro expansion rule: the
left-hand side R(y, z) is a macro that expands to the formula on right-hand side.
To require that the transitive closure of R is acyclic we require that there exists
a relation that includes R, is transitive, and irreflexive:

∃Z
(
sub2(R, Z) ∧ trans(Z) ∧ irrefl(Z)

)
(2)

The macros sub2, trans, irrefl are defined as one would expect. For example,
sub2(P,Q), which says that the arity-2 relation P is included in the arity-2

5

relation Q, is ∀xy
(
P (x, y) ∧ Q(x, y)

)
. In short, the translation from the usual

formulation of memory-models into the SO logic encoding that we propose is
natural and almost automatic. In § 4, we describe this translation in detail for
4 memory models. One of these models (§ 4.4) illustrates that the translation is
not entirely automatic: some care is required to skirt exponential blowup.

To represent programs and their behaviours uniformly for all memory models,
we use event structures. These have the ability to represent an overlay of potential
executions. Some memory-models require reasoning about several executions at
the same time: this is a salient feature of the J+R memory model.

Once we have the program and its behaviour represented as a logic structure A
and the memory model represented as a logic formula φ, we ask whether the
structure satisfies the formula, written A |= φ. In other words, we have to solve a
model-checking problem for second-order logic, which reduces to QBF solving
because the structure A is finite. As a foretaste, consider the SO formula

∃X

(
∀xy

(
(ord(x, y) ∧X(y))→ X(x)

)
∧

∀xy
(
(X(x) ∧X(y))→ ¬conflict(x, y)

)) (3)

which asks if there exists an execution X that is downward closed with respect
to the order ord and does not contain conflicting events. We wish to evaluate
this formula on a structure A defined by

A = {1, 2, 3} ordA := {(1, 2), (1, 3)} conflictA := {(2, 3)} (4)

This structure contains three events that are partially ordered (with 1 coming
first). Events 2 and 3 are conflicting. The QBF question we ask is the following:

∀x1x2x3
(
(x2 → x1) ∧ (x3 → x1) ∧ ¬(x2 ∧ x3)

)
(5)

To represent the arity-1 second-order variable X we introduced 3 (Boolean) QBF
variables x1, x3, x3. In general, an arity-k second-order variable is encoded into
|A|k QBF variables. The first order quantifiers (∀xy) disappeared altogether,
because they were expanded. The relation names ord and conflict do not
appear anymore either, because, once we fixed x and y, we could replace them
by true/false constants that were simplified away. For example, ord(2, 3) was
replaced by ‘false’, which was simplified away; and ord(1, 2) was replaced by
‘true’, which was also simplified away.

Observe that (5) is in fact a SAT instance. This is because the formula (3)
does not contain universal second-order variables. When such universal variables
are present, they give rise naturally to universal QBF variables.

It is well known that SO finite model-checking can be reduced to QSAT.
However, in practice it is important to know how the reduction is done. We give
the details of our reduction in § 5. We have implemented this reduction twice,
independently. One implementation is built-in the SO solver and optimised; the
other implementation is an optional backend for the MM generators. Having
two implementations that agree increases our confidence that they are correct.

6

Further, the MM generator backend produces formulas in the QCIR format,
which can be solved using multiple QBF solvers.

We illustrate the generality of our approach by implementing the MM gen-
erator component for 4 memory models, including one that cannot be handled
by existing simulators. These 4 MM generators are implemented on top of an
OCaml API that provides combinators such as sub2, trans, and irrefl. Since this
API has 4 users, we believe it is reusable.

Three of the four memory models we described could be described in the CAT
language [3], but not J+R. As future work, we aim to extend the CAT language,
and implement a generic MM generator that can handle this extended CAT.

3 Preliminaries

The standard problem solved by simulators is to decide whether a given program
behaviour is allowed by a given memory model. The standard model checking
problem is to decide whether a given structure A satisfies a formula φ, written
A |= φ. We will describe program behaviours by relational structures A, and
memory models by second-order formulas φ.

We now recall standard definitions [34]. A (finite, relational) vocabulary σ is a
finite collection of constant symbols (a, b, . . .) together with a finite collection of
relation symbols (Q, R, . . .). A (finite, relational) structure A over vocabulary σ
is a tuple 〈A, bA, cA, . . . , QA, RA, . . .〉 where A is a finite set called universe with
several distinguished elements aA, bA, . . . and relations QA, RA, . . . To simplify
the presentation, we will assume that the universe A is {aA1 , . . . , aAn}, and that the
constant symbols include a1, . . . , an, which denote the elements of the universe.
For each distinguished relation such as QA, there is a k such that QA ⊆ Ak; we
say that k is the arity of QA. We assume a countable set of first-order variables
(x, y, . . .); for each arity k > 0, we assume a countable set of second-order
variables (Xk, Y k, . . .). In particular, we think of the arity as being part of
the variable name, and we single it out only when necessary. A variable α is a
first-order variable or a second-order variable; a term t is a first-order variable
or a constant symbol; a predicate P k is a second-order variable or a relation
symbol. A (second-order) formula φ is defined inductively: (a) if P k is a predicate
and t1, . . . , tk are terms, then P k(t1, . . . , tk) is a formula; (b) if φ1 and φ2 are
formulas, then φ1 Z φ2 is a formula; (c) if α is a variable and φ is a formula, then
∀αφ and ∃αφ are formulas. Other boolean connectives can be desugared into
logical-not-and Z.

Assume a structure A over universe A, a formula φ, an environment γ that
binds the free first-order variables of φ to elements of A, and an environment Γ
that binds the free SO variables of φ to subsets of Ak, where k is the arity. We
use the notation γ[x 7→ aA] and Γ [x 7→ RA] to extend environments, which we
define as γ[x 7→ aA](y) := aA when y = x and γ(y) otherwise. Similar for Γ .

We let the first-order empty environment ε map constant symbols to their
respective constants ε(a) := aA, and we let the second-order empty environment E
map relation symbols to their respective relations E(R) := RA. With these

7

subk(P k, Qk) := ∀~x
(
P k(~x) → Qk(~x)

)
id(x, y) := (x = y)

eqk(P k, Qk) := ∀~x
(
P k(~x) ↔ Qk(~x)

)
inj(P) := sub2

(
seq(P, inv(P), id)

)
irrefl(P) := ∀x¬P (x, x) seq(P,Q)(x, z) := ∃y

(
P (x, y) ∧Q(y, z)

)
inv(P)(x, y) := P (y, x) trans(P) := sub2

(
seq(P, P), P

)
acyclic(P) := ∃X

(
sub2(P,X) ∧ trans(X) ∧ irrefl(X)

)
TC0(R) := eq1

TCn+1(R)(P 1, Q1) := eq1(P 1, Q1) ∨ ∃X1
(
R(P 1, X1) ∧ TCn(R)(X1, Q1)

)
Fig. 4: Combinators used to build SO formulas. By convention, all quantifiers
that occur on the right-hand side of the definitions above are over fresh variables.
Above, P and Q are arity-2 predicates, P k and Qk are arity-k predicates, x and y
are first-order variables, and R is a combinator.

conventions, we interpret formulas over structures by defining the judgement
A |= φ[γ, Γ] as follows:

A |= P (t1, . . . , tk)[γ, Γ] iff
(
γ(t1), . . . , γ(tk)

)
∈ Γ (P)

A |= (φ1 Z φ2)[γ, Γ] iff not both A |= φ1[γ, Γ] and A |= φ2[γ, Γ]

A |= (∀xφ)[γ, Γ] iff A |= φ
[
γ[x 7→ aA], Γ

]
for all aA ∈ A

A |= (∃xφ)[γ, Γ] iff A |= φ
[
γ[x 7→ aA], Γ

]
for some aA ∈ A

A |= (∀Xk φ)[γ, Γ] iff A |= φ
[
γ, Γ [Xk 7→ RA]

]
for all RA ⊆ Ak

A |= (∃Xk φ)[γ, Γ] iff A |= φ
[
γ, Γ [Xk 7→ RA]

]
for some RA ⊆ Ak

The notation A |= φ is a shorthand for A |= φ[ε, E]. A formula with no free
variables is called a sentence. For a formula φ whose free variables are ~α, both
∃~αφ and ∀~αφ are sentences. We say that φ is satisfiable when there exists a
structure A such that A |= ∃~αφ; we say that φ is valid when for all structures A
we have A |= ∀~αφ.

The logic defined so far is known as SO. If we require that all quantifiers
over second-order variables are existentials, we obtain a fragment known as
∃SO (existential second-order). If we require that all second-order variables have
arity 1, we obtain a fragment known as MSO (monadic second-order). If we make
both requirements, the fragment is called ∃MSO.

Combinators. In what follows, we shall be describing some rather large SO
formulas. To do so concisely, we shall utilise the combinators from Figure 4. All
combinators are typeset in sf-fonts.

Let us discuss two of the more interesting combinators: acyclic and TC. A
relation P is acyclic if it is included in a relation that is transitive and irreflexive.
We remark that the definition of acyclic is carefully chosen: even slight variations
can have a strong influence on the runtime of solvers [23]. The combinator TC for
bounded transitive closure is interesting for another reason: it is higher-order. By

8

way of example, let us illustrate its application to the subset combinator sub1.

TC1(sub1)(P,Q)

= eq1(P,Q) ∨ ∃X
(
sub1(P,X) ∧ TC0(sub1)(X,Q)

)
=

{
∀x1

(
P (x1) ↔ Q(x1)

)
∨

∃X
(
∀x2

(
P (x2) → X(x2)

)
∧ eq1(X,Q)

)
=

{
∀x1

(
P (x1) ↔ Q(x1)

)
∨

∃X
(
∀x2

(
P (x2) → X(x2)

)
∧ ∀x3

(
X(x3) ↔ Q(x3)

))
In the calculation above, P , Q and X have arity 1. In what follows, we freely use
the combinators from Figure 4 and, occasionally, we define some that are specific
to a memory model.

4 Memory Models

In this section, we show that many memory models can be expressed conveniently
in second-order logic. Before diving into the details of memory models, let us
first discuss briefly the representation we use for programs and their behaviours;
namely, event structures. We first describe the theory of event structures (vocabu-
lary and axioms), followed by some useful definitions and notational conventions.
We do not describe how event structures are obtained from programs; for that,
we refer the reader to [27].

Vocabulary. A memory model decides if a program is allowed to have a certain
behaviour. We shall formulate this question as a model checking question, A |= φ.
The vocabulary of A consists of the following symbols:

– arity 1: final, read, write

– arity 2: conflict, justifies, sloc, ≤, =

The symbol = always denotes the identity relation on events, { (x, x) | x ∈ A }.
The symbol ≤ corresponds to program order; we have x ≤ y when events x and y
come from program statements that are ordered in the program text. We have
justifies(x, y) when x reads the value that y wrote, to the same memory
location. We have conflict(x, y) when events x and y cannot belong to the
same execution; for example, events x and y may model the same read-statement
but for different values that are being read. The sets read and write classify
events in the obvious way. We have sloc(x, y) when x and y are access the same
memory location.

The symbol final is not a standard component of event structures. We will
make use of it to identify the set of executions that exhibit a behaviour of interest.

9

Axioms. The theory of event structures is defined by the following axioms:

A |= ∀x
(
¬read(x) ∨ ¬write(x)

)
(6)

A |= ∀xy
(
justifies(x, y)→

(
write(x) ∧ read(y)

))
(7)

A |= ∀xy
(
conflict(x, y)↔ conflict(y, x)

)
(8)

A |= ∀x¬conflict(x, x) (9)

A |= ∀xyz
((
conflict(x, y) ∧ (y ≤ z)

)
→ conflict(x, z)

)
(10)

A |= ∀xyz
((
conflict(x, y) ∧ (z < y)

)
→ (z < x)

)
(11)

A |= ∀xyz

((
conflict(x, y) ∧ conflict(y, z)

)
→
(
conflict(x, z) ∨ (x = z)

)) (12)

Intuitively, conflicts can first occur when an event x is immediately followed in
program-order by two events y1 and y2 which are incomparable to each-other; and
once a conflict occurs it propagates to subsequent events. Furthermore, conflict
is irreflexive, and becomes transitive when unioned with the identity relation.

Currently, our SO solver has no knowledge of the theory of event structures, so
it does not exploit the axioms from above. But, it can check that the structures A
we produce satisfy the axioms, as they should.

Configurations and Executions. We distinguish two types of sets of events. A
configuration is a set of events that contains no conflict and is downward closed
with respect to ≤; that is, X is a configuration when V(X) holds, where the
V combinator is defined by

V(X) :=

∀x∀y

((
X(x) ∧X(y)

)
→ ¬conflict(x, y)

)
∧ ∀y

(
X(y)→ ∀x

(
(x ≤ y)→ X(x)

)) (13)

We say that a configuration X is an execution of interest when every final
event is either in X or in conflict with an event in X; that is, X is an execution
of interest when F(X) holds, where the F combinator is defined by

F(X) := V(X) ∧ ∀x

((
final(x) ∧ ¬X(x)

)
→

∃y
(
conflict(x, y) ∧ final(y) ∧X(y)

)) (14)

Intuitively, we shall put in final all the maximal events (according to ≤) for
which registers have the desired values.

Notations. In the formulas below, X will stand for a configuration, which may be
the execution of interest. Variables Yrf , Yco , Yhb and so on are used to represent
the relations that are typically denoted by rf , co, hb, . . . Thus, X has arity 1,
while Yrf ,Yco , . . . have arity 2.

In what follows, we present four memory models: sequential consistency (§4.1),
release–acquire (§ 4.2), C++ (§ 4.3), and J+R (§ 4.4). The first three can be

10

expressed in ∃SO (and in first-order logic). The last one uses both universal and
existential quantification over sets. For each memory model, we shall see their
encoding in second-order logic.

4.1 Sequential Consistency

The sequential consistency memory model is the oldest and the least relaxed we
consider. Intuitively, this model allows all interleavings of threads, and nothing
else. It is described by the following SO sentence:

SC := ∃XYcoYrf

(
F(X) ∧ co(X,Yco) ∧ rf(X,Yrf) ∧ acyclic(R(Yco ,Yrf))

)
Intuitively, we say that there exists a coherence order relation Yco and a reads-
from relation Yrf which, when combined in a certain way, result in an acyclic
relation R(Yco ,Yrf). The formula co(X,Yco) says that Yco satisfies the usual
axioms of a coherence order with respect to the execution X; and the formula
rf(X,Yrf) says that Yrf satisfies the usual axioms of a reads-from relation with
respect to the execution X. Moreover, the formula F(X) asks that X is an
execution of interest, which results in registers having certain values.

co(X,Yco) := ∀xy

((
X(x) ∧X(y) ∧ write(x) ∧ write(y) ∧ sloc(x, y) ∧ (x 6= y)

)
↔
(
Yco(x, y) ∨Yco(y, x)

))
(15)

rf(X,Yrf) :=

 inj(Yrf) ∧ sub2(Yrf , justifies) ∧

∀y
((

read(y) ∧X(y)
)
→ ∃x

(
write(x) ∧X(x) ∧Yrf (x, y)

)) (16)

When X is a potential execution and Yco is a potential coherence-order relation,
the formula co(X,Yco) requires that the writes in X for the same location includes
some total order. Because of the later condition that R(Yco ,Yrf) is acyclic, Yco is
in fact required to be a total order per location. When X is a potential execution
and Yrf is a potential reads-from relation, the formula rf(X,Yrf) requires that
Yrf is injective, is a subset of justifies, and relates all the reads in X to some
write in X.

The auxiliary relation R(Yco ,Yrf) is the union of strict program-order (<),
reads-from (Yrf), coherence-order (Yco), and the from-reads relation:

R(Yco ,Yrf)(y, z) := (y < z) ∨Yco(y, z) ∨Yrf (y, z) ∨ ∃x
(
Yco(x, z) ∧Yrf (x, y)

)
(17)

4.2 Release–Acquire

The Release–Acquire memory model is similar to sequential consistency but more
relaxed. The structure it operates has the same vocabulary, and the memory

11

model is captured by the formula RA, defined as follows:

RA := ∃XYcoYrf

F(X) ∧ co(X,Yco) ∧ rf(X,Yrf) ∧ acyclic(Yco)

∧ ∃Yhb

 sub2(<,Yhb) ∧ sub2(Yrf ,Yhb) ∧ trans(Yhb)

∧ irrefl(Yhb) ∧ irrefl(seq(Yco ,Yhb))

∧ irrefl(seq(inv(Yrf), seq(Yco ,Yhb)))

(18)

The existential SO variable Yhb over-approximates a relation traditionally called
happens-before.

4.3 C++

To capture the C++ model in SO logic, we follow the .cat model of Lahav et
al. [32]. Their work introduces necessary patches to the model of the standard [10]
but also includes fixes and adjustments from prior work [8,31]. The model is more
nuanced than the SC and RA models and requires additions to the vocabulary
of A, but the key difference is more fundamental. C++ is a catch-fire semantics:
programs that exhibit even a single execution with a data race are allowed to do
anything at all, even burst into flames, and this means that they satisfy every
expected outcome. This difference is neatly expressed in SO logic:

CPP := ∃XYcoYrf

(
co(X,Yco) ∧ rf(X,Yrf) ∧M(Yco ,Yrf)

∧ (F(X) ∨ C(Yco ,Yrf))

)
(19)

The formula reuses co, rf and F(X) and includes two new macros: M(Yco ,Yrf)
and C(Yco ,Yrf). M(Yco ,Yrf) captures the conditions imposed on a valid C++
execution, and is the analogue of the conditions applied in SC and RA. C(Yco ,Yrf)
holds if there is a race in the execution X. Note that the expected outcome is
allowed if F(X) is satisfied or if there is a race and C(Yco ,Yrf) is true.

4.4 Jeffrey–Riely

The J+R memory model is captured by a sentence JRn, parametrised by an
integer n. Unlike the formulas we saw before, JRn makes use of three levels of
quantifiers (∃∀∃), putting it on the third level of the polynomial hierarchy. We
begin by lifting3 justifies from events to sets of events P and Q:

J(P,Q) := ∀y

((
¬P (y) ∧Q(y) ∧ read(y)

)
→ ∃x

(
P (x) ∧ write(y) ∧ justifies(x, y)

)) (20)

AJ(P,Q) := J(P,Q) ∧ sub1(P,Q) ∧ V(P) ∧ V(Q) (21)

3 Our definition of J is different from the original one [27]: we require that only new
reads are justified, by including the conjunct ¬P (y). Without this modification, our
solver’s results disagree with the hand-calculations reported by Jeffrey and Riely;
with this modification, the results agree.

12

We read J as ‘justifies’, and AJ as ‘always justifies’. Next, we define what Jeffrey
and Riely call ‘always eventually justify’

AeJn(P,Q) :=

 sub1(P,Q) ∧ V(P) ∧ V(Q) ∧

∀X
(

TCn(AJ)(P,X)→ ∃Y
(
TCn(AJ)(X,Y) ∧ J(Y,Q)

)) (22)

The size of the formula TCn(AeJm)(P,Q) we defined above isΘ(mn). In particular,
it is bounded. Finally, we let4

JRn := ∃X
(
TCn(AeJn)(∅, X) ∧ F(X)

)
(23)

and ask solve the model checking problem A |= JRn. Since the formulas above
are in MSO, it is sufficient to pick n := 2|A|. Since all bounded transitive closures
include the subset relation, they are monotonic, and it suffices, in fact, to pick
n := |A|. For actual solving, we will use this observation.

5 Encoding in QBF

In the previous section, we saw that deciding whether a given program behaviour
is allowed by a given memory model can often be expressed naturally as a model
checking problem A |= φ in second-order logic. Now we want to solve such
problems. We do not use existing model finders and solvers [13,15,16]: we find
those for first-order logic are efficient, but not expressive enough; whereas those
for higher-order logic are expressive but not efficient. As a middle road, we reduce
the model-checking problem in second-order logic to checking the validity of a
QBF. This reduction is simple and natural, and it lets us profit from the recent
improvements in QBF solving. We first define QBF (§ 5.1) and then present the
translation from SO to QBF (§ 5.2).

5.1 Quantified Boolean Formulas

QBF can be seen as a restriction of second-order logic: (i) we banish second-order
quantifiers from formulas; and (ii) we fix the structure. The universe contains
two elements, 0A and 1A, denoted by the constant symbols 0 and 1, respectively.
There is a unique relational symbol T which denotes the relation {1A}. We denote
this fixed structure by Aqbf . Instead of writing T (0) and T (1) we abuse notation,
as is common, and write 0 and 1.

4 The symbol ∅ denotes the empty unary relation, as expected.

13

5.2 Translation from SO to QBF

Given a structure A and an SO sentence φ, we will construct a QBF sentence
JA |= φK such that A |= φ holds if and only if Aqbf |= JA |= φK holds:

JA |= P (t1, . . . , tk)Kγ,Γ := Γ (P)(γ(t1), . . . , γ(tk)) (24)

JA |= φ1 Z φ2Kγ,Γ := JA |= φ1Kγ,Γ Z JA |= φ2Kγ,Γ (25)

JA |= ∀xφKγ,Γ :=

n∧
i=1

JA |= φKγ[x 7→aAi],Γ (26)

JA |= ∃xφKγ,Γ :=

n∨
i=1

JA |= φKγ[x 7→aAi],Γ (27)

q
A |= ∀Xk φ

y
γ,Γ

:= ∀~x JA |= φKγ,Γ [Xk 7→~x] (28)
q
A |= ∃Xk φ

y
γ,Γ

:= ∃~x JA |= φKγ,Γ [Xk 7→~x] (29)

As before, γ maps first-order variables to universe elements. Unlike before, Γ maps
SO variables Xk to (total) functions from Ak to QBF terms. For example,
Γ (X2)(aA1 , a

A
2) is a QBF term. As before, we make the convention that the empty

first-order environment maps constants to the elements they denote: ε(a) := aA.
For the SO environment, we make the following convention:

E(R)(~a) :=

{
0 if ~a ∈ RA

1 if ~a 6∈ RA
(30)

Above, 0 and 1 are QBF constants, and ~a ∈ Ak where k is the arity of R. The
notation JA |= φK is shorthand for JA |= φKε,E .

In (28) and (29), SO quantifiers are handled by introducing |A|k QBF vari-
ables ~x, where k is the arity. The SO environment Γ is extended with a binding
from the SO variable Xk to a bijective function from Ak to the fresh variables.
In (24), this function is extracted from the environment and applied. Intuitively,
the QBF variable ~x(aA1 , . . . , a

A
k) tracks whether (aA1 , . . . , a

A
k) belongs to Xk.

In (26) and (27), first-order quantifiers are handled by simply expanding
them into corresponding boolean connectives. This eager expansion is a potential
target for optimisation in the future.

6 Evaluation

The evaluation aims to analyse the performance and correctness of the developed
tool. To this end we included “tricky” benchmarks that are studied in the
literature and benchmarks for scaling. Additionally, various beckends to the
presented tool PrideMM are considered.

14

 0

 1000

 2000

 3000

 4000

 5000

 6000

 8 10 12 14 16 18 20 22 24

E
x
ec

u
ti
o
n
 T

im
e

(s
)

Threads in SB test

PrideMM+QFUN
PrideMM+QFM

Herd7

Fig. 5: Comparison between Herd
and PrideMM on the store buffer
problem.

Prob. SAT caqe (s) qfun (s) qfm (s)

1 N ⊥ 610 2
2 N ⊥ 23 2
3 Y ⊥ ⊥ 222
4 Y ⊥ 2 5
5 Y ⊥ 78 51
6 N 5 4 1
7 Y ⊥ 280 56
8 N ⊥ 2 2
9 N ⊥ 2 1
10 Y ⊥ 36 10
11 Y ⊥ 598 335
13 Y 1 1 1
14 Y ⊥ 29 33
15 Y ⊥ 512 157
16 N ⊥ ⊥ 12
17 N ⊥ 39 311
18 N ⊥ 359 190

#17 #2 #15 #17

Table 1: CPU time for solving the lit-
mus tests with J+R model; ⊥ represents
time/mem-out.

Solvers. We evaluate the QBF approach using off-the-shelf solvers CAQE [46]
and QFUN [22], the respective winners of the CNF and non-CNF tracks at 2017’s
QBFEVAL competition [44]. Our QBF benchmarks were first produced in the
circuit-like format QCIR [28], natively supported by QFUN. The inputs to CAQE
were produced by converting to CNF through standard means, followed by a
preprocessing step with bloqqer [12].

Encouraged by the results of the QBF approach, we have started the develop-
ment of a dedicated solver for SO model checking. The solver is called QFM and
it accepts as input a structure and an SO formula. Currently the solver expands
all first-order quantifications, following a similar approach to the translation of
Section 5.2. The QBF problem is then solved using the non-prenex version of
the RAReQS algorithm [24]. A dedicated SO solver is able to use specialised
techniques, e.g. lazily expanding quantifiers. Such techniques present a particular
advantage for universes with large number of elements: the inherent exponential
characteristic of the expansion step will eventually lead to issues in the translation
to QBF.

Instances and memory models. In our first set of instances, we simulate a series
of n-threaded store-buffering tests (Figure 6) over sequential consistency [33],
and compare the performance of PrideMM and Herd7 [5]. The results of this
comparison are shown in Figure 5. In a second set of instances, we simulate
the J+R model on the Java causality tests [36]. There are no other tools to

15

initially x1 = 0, x2 = 0, . . . , xn = 0

x1 = 1 x2 = 1 . . . xn−1 = 1 xn = 1

r1 = xn r2 = x1 . . . rn−1 = xn−2 rn = xn−1

r1 == 0 ∧ r2 == 0 ∧ . . . ∧ rn−1 == 0 ∧ rn == 0 allowed?

Fig. 6: The store-buffer problem.

benchmark against; ours is the only simulator for this model. Instead, we provide
a comparative evaluation between our QBF and QFM backends. In a final set of
instances, we simulate a collection of standard tests taken from the literature on
axiomatic memory models [48]. Each of these completes in under 6s.

Discussion of the results. Figure 5 indicates a stark contrast in the scalability of
the store-buffering problem on PrideMM when compared with Herd7. PrideMM
enables the practical simulation of far larger tests: 25-thread SB – with 100
events – solves in 1 minute. Axiomatic tests reduce to SAT problems, so one
might expect similar performance from QFUN and QFM, but QFUN has the
more mature implementation.

Table 1 demonstrates the viability of our approach to simulating the J+R
model. QFUN solves all but two instances, whereas QFM solves all of them, taking
no longer than 6 min on any instance. We found the CNF-based QBF solver
CAQE to be inadequate for these problems. The timeout was set to 30 minutes,
and the memory available was 32GB. The dedicated SO solver QFM performs
better than the off-the-shelf QBF solver QFUN – even though they implement
the same algorithm. We attribute this to a more efficient implementation of
the expansion of first-order logic quantifiers (e.g. repetition of subformulas is
avoided by hash-consing already during expansion). Additionally, QFM supports
non-prenex input, while QFUN operates on prenex form. The satisfiability of
each instance matches the expected results [27].

7 Related Work

Our evaluation was limited to 4 memory models: SC, RA, C++ and J+R.
Although we have covered a breadth of axiomatic models, there are several others
that fall into the class of the J+R model that we have not covered, i.e. the
promising model of Kang et al. [29], or the model of Pichon–Pharabod and Sewell
(P+S) [42]. It is clear that Promising and P+S are definable in higher-order logic
and hence in second-order logic, by the standard encoding of higher-order in
second-order (over finite structures). Moreover, for J+R, we do not show that the
model definable directly as a second-order logic formula φ, but instead describe it
as a sequence {φn}n≥0 of formulas, one for each universe size. Thus, our decision
to stay in second-order logic and use parametrised formulas does not prevent us
from representing other models, and experimental validation indicates that we
have found a pragmatic sweet-spot for simulating this new class of models.

16

We use Herd as a performance benchmark because it is the predominant
weak-memory modelling tool, but there are others. CDSChecker [40] is a model
checker entirely specialised to the axiomatic model of C++. Memalloy [53] uses
SAT solvers to model a range of models, but cannot model the J+R model
efficiently.

There are other weak-memory questions that one might seek to answer au-
tomatically beyond simulation: Memalloy [53] can compare axiomatic memory
models to find programs that act as differentiating counterexamples, with execu-
tions allowed by one and not the other. Bornholt and Torlak’s MemSynth [14]
can synthesise axiomatic memory models from sets of litmus tests. We choose
synthesis as our task because it is a good starting point with clear utility.

8 Conclusion

This paper presents PrideMM, a tool that vastly exceeds the performance of
Herd, a state-of-the-art simulator for axiomatic concurrency models, and that
simulates one of a new class of models for which previous techniques do not apply.
We argue that for weak-memory model simulation, SO logic provides a useful
balance of expressiveness and performance when combined with state-of-the-art
solvers.

References

1. Alglave, J., Batty, M., Donaldson, A.F., Gopalakrishnan, G., Ketema, J., Po-
etzl, D., Sorensen, T., Wickerson, J.: GPU concurrency: Weak behaviours and
programming assumptions. In: Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015. pp. 577–591 (2015),
http://doi.acm.org/10.1145/2694344.2694391

2. Alglave, J., Cousot, P.: Syntax and analytic semantics of LISA. https://arxiv.
org/abs/1608.06583 (2016)

3. Alglave, J., Cousot, P., Maranget, L.: Syntax and analytic semantics of the weak con-
sistency model specification language CAT. https://arxiv.org/abs/1608.07531
(2016)

4. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in weak memory models
(extended version). Formal Methods in System Design 40(2), 170–205 (2012),
https://doi.org/10.1007/s10703-011-0135-z

5. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014), http://doi.acm.org/10.1145/2627752

6. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: AAAI. pp.
275–281 (2005)

7. Balabanov, V., Jiang, J.R., Mishchenko, A., Scholl, C.: Clauses versus gates in
CEGAR-Based 2QBF solving. In: Beyond NP, AAAI Workshop (2016)

8. Batty, M., Donaldson, A.F., Wickerson, J.: Overhauling SC atomics in C11 and
opencl. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,

17

http://doi.acm.org/10.1145/2694344.2694391
https://arxiv.org/abs/1608.06583
https://arxiv.org/abs/1608.06583
https://arxiv.org/abs/1608.07531
https://doi.org/10.1007/s10703-011-0135-z
http://doi.acm.org/10.1145/2627752

January 20 - 22, 2016. pp. 634–648 (2016), http://doi.acm.org/10.1145/2837614.
2837637

9. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-
lem of programming language concurrency semantics. In: Programming Languages
and Systems - 24th European Symposium on Programming, ESOP 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. pp. 283–307 (2015),
https://doi.org/10.1007/978-3-662-46669-8_12

10. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++
concurrency. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011. pp. 55–66 (2011), http://doi.acm.org/10.1145/1926385.1926394

11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

12. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: The 23rd
International Conference on Automated Deduction CADE (2011)

13. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Interactive Theorem Proving, First
International Conference (ITP). pp. 131–146 (2010), https://doi.org/10.1007/
978-3-642-14052-5_11

14. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches and
litmus tests. In: Proceedings of the 38th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017. pp. 467–481 (2017), http://doi.acm.org/10.1145/3062341.3062353

15. Brown, C.E.: Satallax: An automatic higher-order prover. In: Automated Reasoning
- 6th International Joint Conference (IJCAR). pp. 111–117 (2012), https://doi.
org/10.1007/978-3-642-31365-3_11

16. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: TACAS (2014)

17. Goultiaeva, A., Bacchus, F.: Exploiting QBF duality on a circuit representation.
In: AAAI (2010)

18. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation
and CNF-based QBF solving. In: DATE. pp. 811–814 (2013)

19. Gray, K.E., Kerneis, G., Mulligan, D.P., Pulte, C., Sarkar, S., Sewell, P.: An
integrated concurrency and core-isa architectural envelope definition, and test
oracle, for IBM POWER multiprocessors. In: Proceedings of the 48th International
Symposium on Microarchitecture, MICRO 2015, Waikiki, HI, USA, December 5-9,
2015. pp. 635–646 (2015), http://doi.acm.org/10.1145/2830772.2830775

20. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. In: SAT. pp. 114–128 (2012)

21. Janota, M., Marques-Silva, J.: An Achilles’ heel of term-resolution. In: EPIA
Conference on Artificial Intelligence. pp. 670–680 (2017)

22. Janota, M.: Towards generalization in QBF solving via machine learning. In: AAAI
Conference on Artificial Intelligence (2018)

23. Janota, M., Grigore, R., Manquinho, V.: On the quest for an acyclic graph. In:
RCRA (2017)

24. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artificial Intelligence 234, 1–25 (2016)

25. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: SAT. pp.
230–244 (2011)

18

http://doi.acm.org/10.1145/2837614.2837637
http://doi.acm.org/10.1145/2837614.2837637
https://doi.org/10.1007/978-3-662-46669-8_12
http://doi.acm.org/10.1145/1926385.1926394
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
http://doi.acm.org/10.1145/3062341.3062353
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.1007/978-3-642-31365-3_11
http://doi.acm.org/10.1145/2830772.2830775

26. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: International
Joint Conference on Artificial Intelligence (IJCAI) (2015)

27. Jeffrey, A., Riely, J.: On thin air reads towards an event structures model of relaxed
memory. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science. pp. 759–767. LICS ’16, ACM, New York, NY, USA (2016),
http://doi.acm.org/10.1145/2933575.2934536

28. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: AAAI
Workshop: Beyond NP. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

29. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017. pp. 175–189 (2017), http://dl.acm.org/citation.cfm?id=
3009850

30. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A non-prenex, non-clausal QBF
solver with game-state learning. In: SAT (2010)

31. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016. pp. 649–662 (2016), http://doi.acm.org/10.1145/2837614.2837643

32. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential consis-
tency in C/C++11. In: Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017. pp. 618–632 (2017), http://doi.acm.org/10.1145/3062341.3062352

33. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979), https:

//doi.org/10.1109/TC.1979.1675439

34. Libkin, L.: Elements of Finite Model Theory. Springer (2004)
35. Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. In: Theory

and Applications of Satisfiability Testing - SAT. pp. 435–452 (2016)
36. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: Proceedings of

the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005. pp.
378–391 (2005), http://doi.acm.org/10.1145/1040305.1040336

37. Marin, P., Narizzano, M., Pulina, L., Tacchella, A., Giunchiglia, E.: Twelve years of
QBF evaluations: QSAT is PSPACE-hard and it shows. Fundam. Inform. 149(1-2),
133–158 (2016), https://doi.org/10.3233/FI-2016-1445

38. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

39. Morisset, R., Pawan, P., Nardelli, F.Z.: Compiler testing via a theory of sound optimi-
sations in the C11/C++11 memory model. In: ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June
16-19, 2013. pp. 187–196 (2013), http://doi.acm.org/10.1145/2491956.2491967

40. Norris, B., Demsky, B.: A practical approach for model checking c/c++11 code.
ACM Trans. Program. Lang. Syst. 38(3), 10:1–10:51 (May 2016), http://doi.acm.
org/10.1145/2806886

41. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Theory
and Applications of Satisfiability Testing - (SAT). pp. 298–313 (2017), https:

//doi.org/10.1007/978-3-319-66263-3_19

42. Pichon-Pharabod, J., Sewell, P.: A concurrency semantics for relaxed atomics
that permits optimisation and avoids thin-air executions. In: Proceedings of the

19

http://doi.acm.org/10.1145/2933575.2934536
http://dl.acm.org/citation.cfm?id=3009850
http://dl.acm.org/citation.cfm?id=3009850
http://doi.acm.org/10.1145/2837614.2837643
http://doi.acm.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
http://doi.acm.org/10.1145/1040305.1040336
https://doi.org/10.3233/FI-2016-1445
http://doi.acm.org/10.1145/2491956.2491967
http://doi.acm.org/10.1145/2806886
http://doi.acm.org/10.1145/2806886
https://doi.org/10.1007/978-3-319-66263-3_19
https://doi.org/10.1007/978-3-319-66263-3_19

43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp.
622–633 (2016), http://doi.acm.org/10.1145/2837614.2837616

43. QBF Eval, http://www.qbflib.org/index_eval.php
44. QBF Eval 2017, http://www.qbflib.org/event_page.php?year=2017
45. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Theory and Applications

of Satisfiability Testing - SAT. pp. 375–392 (2016)
46. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Formal Methods in

Computer-Aided Design, FMCAD. pp. 136–143 (2015)
47. Ranjan, D.P., Tang, D., Malik, S.: A comparative study of 2QBF algorithms. In:

SAT. pp. 292–305 (2004)
48. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding

POWER multiprocessors. In: Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011. pp. 175–186 (2011), http://doi.acm.org/10.1145/1993498.
1993520

49. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Theory and Applications
of Satisfiability Testing (SAT). pp. 393–401 (2016)

50. Van Gelder, A.: Primal and dual encoding from applications into quantified boolean
formulas. In: CP. pp. 694–707 (2013)

51. Ševč́ık, J., Aspinall, D.: On validity of program transformations in the Java mem-
ory model. In: ECOOP 2008 - Object-Oriented Programming, 22nd European
Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings. pp. 27–51 (2008),
https://doi.org/10.1007/978-3-540-70592-5_3

52. Wickerson, J., Batty, M., Beckmann, B.M., Donaldson, A.F.: Remote-scope promo-
tion: clarified, rectified, and verified. In: Proceedings of the 2015 ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015. pp. 731–747 (2015), http://doi.acm.org/10.1145/2814270.2814283

53. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically compar-
ing memory consistency models. In: Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017. pp. 190–204 (2017), http://dl.acm.org/citation.cfm?id=3009838

54. Winskel, G.: Event structures, pp. 325–392. Springer Berlin Heidelberg, Berlin,
Heidelberg (1987), https://doi.org/10.1007/3-540-17906-2_31

55. Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms.
In: AAAI (2006)

56. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: International Conference On Computer Aided Design (ICCAD). pp.
442–449 (2002)

20

http://doi.acm.org/10.1145/2837614.2837616
http://www.qbflib.org/index_eval.php
http://www.qbflib.org/event_page.php?year=2017
http://doi.acm.org/10.1145/1993498.1993520
http://doi.acm.org/10.1145/1993498.1993520
https://doi.org/10.1007/978-3-540-70592-5_3
http://doi.acm.org/10.1145/2814270.2814283
http://dl.acm.org/citation.cfm?id=3009838
https://doi.org/10.1007/3-540-17906-2_31

	PrideMM: A Solver for Relaxed Memory Models

