coreStar

Matko Botinc¢an, Dino Distefano, Mike Dodds, Radu Grigore,
Daiva Naudzitniené, Matthew J. Parkinson

August 2, 2011



Separation Logic—Models

o,hlE=¢
where
o € Variable —~ Value (1)
h € (Value x Variable) = Value (2)
Examples
o,] E emp (3)
[x:0h = x=0 (4)
x:0L[0,F): 1] | x+s 1 (5)
)

[x:0,y:1],[(0,f):2,(1,8):3]



Separation Logic—Symbolic Execution of Calls

statement z:= f(e)
specification {P} x:=f(y) {Q}

Pure Only State I

If M= Plely] is valid
then continue with Q[z/x] A 32'.1[Z’/z]
else signal an error.

Spatial State X

If £ = (Plely]* F) is valid for some frame F
then continue with Q[z'/z]z/x]* 3z'.F[Z'/z]
else signal an error



Some Existing Tools that use Separation Logic

Not based on coreStar

» Smallfoot [Berdine et al., 2005]
» nameless [Chin et al., 2007]

» Spacelnvader [Yang et al., 2008],
Abductor [Calcagno et el., 2009],
Infer [Calcagno, Distefano, 2011]

» VeriFast [Jacobs et al., 2010]

Based on coreStar

» jStar [Distefano, Parkinson, 2008]
» MultiStar [van Staden, Calcagno, 2010]
» VMC [Botinéan et al. 2011]



coreStar Architecture

frontend

lcoreStarIL

symbolic
interpreter

I.mu (stable)
separation
logic prover

SMT solver



coreStarlL

m

n n n O

M %

{#} S1;... S {}

X1, o) xn:={o}H o}

label /

goto Iy, ..., l,

MNZ|¢g*¢

true |[E=E |E 4 E | p(Ey, ... Ep)
emp | s(Eg, ..., E,)

,_\ AA,_\
—_ FEENEREENEREIN

o1 b~ W N = O

- == = —_— = =



coreStarlL—Example Frontend Translation

x=E
x = xE
*E = F
new(x)
del(x)

§

§

H

= {Hret1 = £}
= {pto(E, _v)}{pto(E, _v) xret; = _v}
() = {pto(E, _v)H{pto(E, F)}

() := {Hpto(x, _v)}
() := {ptolx, _v)H{}

if (E) then B; else By

goto Iy, b;

label hy; () := {}{E}; Bi;goto h3;
label h; () := {}{E}; Ba; label k;

—_
o

=]
—_ = ===



Symbolic Interpreter

Queries
Given {P} S1;...5: {Q}.
> is it correct?
» is there some F such that {Px F} S1;...Sp {Q} is correct?

How It Works (for the First Query)

for each symbolic state (¢, s)
ask the prover to generate candidate frames F
for each frame F
generate a next symbolic state
(perhaps) apply user defined abstraction rules
remember the new (abstract symbolic) state
repeat until fix-point



Separation Logic Prover

Queries
Given formulas ¢ and ¢,
> is ¢ = ¥ valid?
> is there some F such that ¢ = (¢ % F) is valid?

> is there some A and some F such that (¢ x A) = (Y * F) is
valid?

What It Does

» congruence closure (with uninterpreted functions)
» backtracking search based on user defined logic rules

» off-load pure goals to SMT solver



coreStarlL—Example Frontend Rules

rule pto_removel:

| pto(?x, ?v) |- pto(?x, 7w)
without

v 1= 7w
if

pto(?x, ?v) | |- 7v = 7w

rule pto_pto_contradictionl
pto(?x, ?v) * pto(?x, 7w) | |-
if



Future

> issues we know of

» interprocedural analysis

» handle recursion (now off-loaded to front-end)

» systematic way of proving soundness of logic rules and
abstraction rules

abstraction rules not enough for some abstractions
baby APlIs for symbolic and interpreter and for prover
documentation (actually re-implement Smallfoot, ...)
bug fixes

code cleanup

vV Yy VY VY VY

> issues we don't know of
> please try it and improve it

» http://jstarverifier.org/
> http://github.com/seplogic/corestar


http://jstarverifier.org/
http://github.com/seplogic/corestar

eof



