
TOPL: A Language for Specifying Safety
Temporal Properties of Object-Oriented Programs

Radu Grigore Rasmus Lerchedahl Petersen Dino Distefano
Queen Mary, University of London

{rgrig,rusmus,ddino}@eecs.qmul.ac.uk

Abstract
In this paper we present ongoing work related to a new specification
language for temporal safety properties aimed at object-oriented
software. The language naturally captures relationships between
objects and it is designed with the goal of performing dynamic and
static analysis. We present its formal semantics as well as several
examples showing its expressivity.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications

General Terms Languages, Verification

Keywords Safety, Temporal Properties, Object-Oriented

1. Introduction
The verification community showed interest in temporal safety
properties for a long time. Manna and Pnueli [24] provide a
theoretical foundation and clearly argue why such properties are
crucial. In this article, we focus on an object-oriented setting. The
long term aim of our project is the automatic verification of temporal
safety properties for Java programs of realistic size. To achieve our
aim we need

• a language to formally specify temporal safety properties, and
• tools that automatically analyze Java code, dynamically and

statically, with respect to given temporal safety properties.

This paper addresses the first point by introducing TOPL (temporal
object-oriented property language, pronounced like ‘topple’). The
development of tools remains future work.

We draw inspiration from existing specification languages, each
of which we found not entirely suitable for our goal. Bierhoff and
Aldrich [8] as well as Naeem and Lhoták [25] use specification
languages inspired by typestates [29]. Specifically, Bierhoff and
Aldrich [8] use a combination of linear logic [18] and access
permissions, while Naeem and Lhoták [25] use tracematches. Disney
et al. [14] use a language based on regular grammars to specify
higher-order temporal contracts. Finally, Ball and Rajamani [5]
essentially use nondeterministic aspect-oriented programming.

TOPL has the following characteristics:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOOL’11 October 23, 2011, Portland, Oregon, USA
Copyright c© 2011 ACM [to be supplied]. . . $10.00

1. It expresses easily relationships between several objects.

2. It is very high-level and similar to diagrams used in informal
explanations.

3. It has a well-defined formal semantics in terms of a specific type
of automatons.

4. It is designed to be used in program analysis (both static and
dynamic).

The ability to express relations of several objects makes TOPL quite
expressive. For example, for Java collections, a typical property one
would want to state is:

If one iterator modifies its collection, then other existing
iterators of the same collection become invalid and cannot
be used later.

It is apparent that the formalization of the above constraint needs
to keep track of several objects (at least two iterators, and one
collection) and their interaction. Most other techniques aim at
decomposing properties involving several objects into specifications
that reflect the point of view of a single object. In contrast, TOPL
does not try to achieve such decomposition. Parkinson [26] argues
that invariants involving several objects are sometimes better than
one-object invariants. Similarly, we believe that temporal properties
that naturally involve several objects are easier to reason about if
they are not decomposed.

Because TOPL is a high-level language with formal semantics
(points 2 and 3 above), it reduces the semantic gap between the
programmers’ intuition of various temporal constraints on their code
and the precise formal description needed by verification tools for
automatic checking of these constraints.

In this paper we focus on TOPL’s formal semantics and on
TOPL’s expressivity.

The paper is organized as follows. In Section 2 we start with
motivating examples. Section 3 gives the syntax of TOPL and
Section 4 introduces its semantics. Section 5 discusses related work.
Finally, Section 6 concludes the paper and describes our plans for
future work.

2. Examples
The first example (Section 2.1) uses a large part of TOPL. The other
examples (Sections 2.2–2.5) illustrate TOPL’s expressiveness.

2.1 Iterators Step by Step
The last statement in Figure 1 throws an exception. There are
two iterators on the same collection, one of them modifies the
collection, and this invalidates the other iterator. Such properties are
often explained using diagrams [8–10, 16, 17, 25]. The diagrams
sometimes have semantics, but are not expressive enough [16, 17];
the diagrams are sometimes expressive, but do not have formal

import java.util.*;
public class IncorrectIteratorUse {

public static void main(String[] args) {
List<Integer> c = new ArrayList<Integer>();
c.add(1); c.add(2);
Iterator<Integer> i = c.iterator();
Iterator<Integer> j = c.iterator();
i.next(); i.remove(); j.next();

}
}

Figure 1. A first example: Java code

prefix <java.util.{Collection,Iterator}>

start

one

two
xBadyBad

error

X := C.iterator()

∗

∗
Y := c.iterator()

y.remove()x.remo
ve()

call
x.∗call y.∗

Figure 2. A first example: Diagram of safety property

property IteratorComodification
prefix <java.util.{Collection,Iterator}>
start -> start:* // implicit by convention
start -> one: X := C.iterator()
one -> one: *
one -> two: Y := c.iterator()
two -> yBad: x.remove()
two -> xBad: y.remove()
yBad -> error: call y.*
xBad -> error: call x.*

Figure 3. A first example: TOPL property

semantics [8–10, 25]. Figure 2, on the other hand, captures a
temporal property involving three interacting objects and has formal
semantics. Figure 3 describes the same property in (the textual form
of) TOPL, and is clearly isomorphic to the diagram of Figure 2. The
rest of this section explains the semantics of Figure 2 and Figure 3:
Modifying a collection through an iterator invalidates other iterators
for the same collection.

Vertices have identifiers (start, one, two, . . .); transitions have
labels (I := C.iterator(), . . .). There are two special vertices:
start, from where the execution begins; and error, where the
execution ends. Labels capture, roughly, the shape of statements that
enable the corresponding transition.

Figure 4 shows an execution of the program and of an automaton
for the property IteratorComodification. The automaton is
nondeterministic. The lines {in curly brackets} describe the state
of the automaton; the lines in monotype show the statements that
execute; the other lines are comments. At a given moment, the
automaton has a set of active states. A state is a pair of a vertex
and a store. The store is a memory that holds automaton variables.
Technically, it is a finite partial map from variables to values. (A
partial finite map is sometimes called a dictionary.)

{ (start, []) }
Iterator<Integer> i = c.iterator();

// assume c == γ and i == α

{ (start, []),
(one, [c : γ, x : α]) }

Iterator<Integer> j = c.iterator();

// assume j == β

{ (start, []),
(one, [c : γ, x : α]),

(one, [c : γ, x : β]),

(two, [c : γ, x : α, y : β]) }
i.next();

{ (start, []),
(one, [c : γ, x : α]),

(one, [c : γ, x : β]),

(two, [c : γ, x : α, y : β]) }
i.remove();

{ (start, []),
(one, [c : γ, x : α]),

(one, [c : γ, x : β]),

(yBad, [c : γ, x : α, y : β]) }
j.next()

{ (start, []),
(one, [c : γ, x : α]),

(one, [c : γ, x : β]),

(error, [c : γ, x : α, y : β]) }

Figure 4. A first example: Running step by step

Notation 1. We write [k1 : v1, k2 : v2] for the finite partial map that
maps key k1 to value v1, and key k2 to value v2. The empty map is
denoted by [].

The automaton has variables x, y, and c. At vertex one the
variables x and c are initialized, and the variable y is not initialized;
at vertex two all the variables x, y, and c are initialized. Being at
vertex one means that x is an iterator for c; being at vertex two
means that x and y are two iterators for the same collection c. There
is a program variable c and an automaton variable c. The same
name was chosen because the two variables always hold the same
value in this example. In general, however, program variables and
automaton variables live in different namespaces, and may hold
different values.
Notation 2. Program variables are typeset in monotype (c, i, j);
automaton variables are typeset in italics (c, x, y). Program variables
appear in the program; automaton variables do not appear in the
property. Instead, automaton variable patterns appear in the property,
and they are typeset in underlined monotype (c, C, x, X, y, Y).
We say uppercase pattern for an automaton variable pattern that
starts with an uppercase letter (C, X, Y); we say lowercase pattern
for an automaton variable pattern that starts with a lowercase letter
(c, x, y).

As it will become apparent below, uppercase patterns write
to the automaton store, while lowercase patterns read from the
automaton store.

We now execute the program and the automaton step by step in
parallel. Each step introduces a few new concepts.

Step 1. Initially, only the state (start, []) is active. The outgoing
transition of vertex start is labeled by

X := C.iterator()

and the first executed statement is

i = c.iterator().

A method call matches a label when

(a) the called method matches the method pattern, and

(b) the program values match their corresponding patterns.

By definition, any value matches an uppercase pattern. Here, the
values of i and c trivially match the patterns X and C. The method
itself also matches the method pattern, but for a slightly more
complicated reason than it appears. In Java, methods are identified
by their fully qualified names plus the static types of the arguments.
For simplicity, we ignore argument types and identify Java methods
only by their fully qualified name and their arity. The called method
iterator is in the class ArrayList and has arity 1. We identify it
as follows.

java.util.ArrayList.iterator[1]

(Only static methods have arity 0.) Without the prefix directive,
the method pattern would be iterator[1]. With the directive,
however, the pattern is the following.

java.util.Collection.iterator[1]

java.util.Iterator.iterator[1]

The meaning is that these two methods and all those that override
them match. Here, ArrayList implements Collection.

All conditions are met to enable the transition from start to one.
When the transition is performed the values that matched X and C are
written in the automaton variables x and c. For concreteness, let us
assume these values are, respectively, the references α and γ. (Note
that the program variables x and c may change their values, which
is why we need a name for their values α and γ at this point.) After
the transition is performed, the state (one, [c : γ, x : α]) is active.
The state (start, []) remains active because the implicit transition

start -> start: *

is also enabled and performed. For convenience, TOPL assumes that
there is a loop on start even if the user did not explicitly write it.

Step 2. For the second step, the statement to be executed is

j = c.iterator().

Now we need to consider the two active states

(start, []) and (one, [c : γ, x : α])

in turn. For (start, []), the same reasoning as for step 1 holds, so
the states (start, []) and (one, [c : γ, x : β]) are active after step 2.
Note that now the automaton variable x remembers the value of
the program variable j. For (one, [c : γ, x : α]), we look at the
transitions outgoing from vertex one.

one -> one: *

one -> two: Y := c.iterator()

The transition from one to one is always enabled, and performing
it keeps states with vertex one active. The transition from one to

two has two patterns, Y and c. The uppercase pattern Y always
matches; the lowercase pattern c matches only the value held by
the automaton variable c. In this case, the automaton variable c
and the program variable c both have the same value γ. Therefore,
the transition from one to two is performed and the state (two, [c :
γ, x : α, y : β]) is activated.

Step 3. The third step involves the statement

i.next();

which enables the transitions

one -> one: *

start -> start: *.

All the active states remain active, but for different reasons. The
active states with the vertex start and those with the vertex one
remain active because the enabled transitions are loops. The active
state with the vertex two remains active because no outgoing
transition is enabled. Therefore the set of active states of the
automaton remains unchanged.

Step 4. In the fourth step, the transition from two to yBad is
performed. Notice that the label x.remove() does not have a left-
hand side, which simply means that the returned value is irrelevant
for this transition. The states corresponding to vertices start
and one remain unchanged, because their outgoing transitions
are disabled.

Step 5. For the fifth and final step, the statement to be executed is

j.next().

The label of the outgoing transition

call y.∗

of the active state (yBad, [c : γ, x : α, y : β]), has two distinguish-
ing features: the ∗ as a method pattern and the tag call. As before,
before matching the method name, the prefixes are prepended.

java.util.Collection.*[*]

java.util.Iterator.*[*]

Then the ∗s are expanded, taking into account the CLASSPATH. We
have a match because the expansion

java.util.Iterator.next[1]

is overridden by the method that is actually called.
The tag call is used when we want the automaton to take a

transition precisely at the call-time of a method invocation. The
automaton expresses that a call to one of j’s methods while vertex
yBad is active constitutes an error. Notice that this is different from
a label like X := C.iterator() which may match only after the
return value is known.

The execution we stepped through reaches the error vertex,
so we conclude that the property is violated. Notice that in order
to find a counterexample we need to keep track of the relation
between several objects, in particular that iterators i and j are for
the same collection c. One can write the TOPL property without
understanding any implementation of Java’s collections library.

2.2 More on Iterators
Other interesting properties of iterators [10, 21, 25] are also easy to
express in TOPL.

Modifying a collection invalidates all its existent iterators:
property CollectionComodification

prefix <java.util.{Collection,Iterator}>
start -> iterating: I := C.iterator()
iterating -> modified: c.add(*), c.remove(*)
modified -> error: call i.*

The transition from iterating to modified should list all the
methods of Collection that mutate it. If classes that implement
Collection add mutating methods, then those should be included
as well. This abstraction leak is intrinsic to Java, where sub-classing
is not sub-typing.

Iterators should advance only if they are not exhausted:
property UnsafeIteratorNext

prefix <java.util.{Collection,Iterator}>
start -> iterating: I := *.iterator()
iterating -> notExhausted: <true> := i.hasNext()
notExhausted -> iterating: i.next()
iterating -> error: i.next()

The transition from iterating to notExhausted is enabled when
hasNext returns true. Java literals surrounded in angle brackets
act as guards on transitions.

Method remove may only be called after next:
property RemoveBeforeNext

prefix <java.util.{Collection,Iterator}>
start -> created: I := *.iterator()
created -> ok: i.next()
created -> error: i.remove()

The vertex ok is not special. The purpose of the transition going to
ok is to deactivate the state with vertex created.

We have now seen four properties of iterators. The first two
involve more than one object; the last two involve only one object.
In all cases, TOPL properties are succinct and each corresponds to
one English sentence.

2.3 Resources
Many resources impose two temporal properties: Before being used
they must be acquired; after being acquired they must eventually be
released. Resources include memory, files, sockets, locks. Memory
must be allocated before reading or writing and should eventually
be deallocated; files must be opened before reading or writing and
should eventually be closed; sockets must be created before sending
and receiving data and should eventually be closed; locks should
be acquired before accessing the memory they protect and should
eventually be released.

Resources are often represented by objects.
interface Resource {

void acquire();
void use();
void release();

}

To create a resource, we use the static method makeResource.

A resource must be acquired when used:
property UseReleasedResource

prefix <resources> // a package
start -> released: R := makeResource()
released -> error: r.use()
released -> acquired: r.acquire()
acquired -> released: r.release()

In simple cases, resources cannot repeatedly move between the
states released and acquired.
property UseReleasedSimpleResource
prefix <resources> // a package
start -> acquired: R := makeResource()
acquired -> released: r.release()
released -> error: r.use()

The following examples in this subsection only cover the case when
acquire must be called explicitly.

A resource must not be released twice:
property DoubleRelease
prefix <resources> // a package
start -> released: R := makeResource()
released -> acquired: r.acquire()
acquired -> released: r.release()
released -> error: r.release()

Similarly, one can express that a resource must not be acquired
twice.

A resource must eventually be released:
property ResourceLeak
prefix <resources> // a package
start -> released: R := makeResource()
released -> acquired: r.acquire()
acquired -> released: r.release()
acquired -> error: return Main.main[1]

TOPL is designed for safety properties, which have finite counter-
examples. It is not possible to express the lack of resource leaks
in non-terminating programs. It is possible, however, to check if
resources are leaked when the program terminates.

2.4 SLIC Queue
SLIC [5] is the property language of SLAM [4]. Its authors give the
following interesting example.

A queue may contain at most three zeros:
property TooManyZeros
start -> cnt0: Q := makeQueue()
cnt0 -> cnt1: q.put(0)

cnt1 -> cnt2: q.put(0)

cnt2 -> cnt3: q.put(0)

cnt3 -> error: q.put(0)

cnt3 -> cnt2: 0 := q.get()

cnt2 -> cnt1: 0 := q.get()

cnt1 -> cnt0: 0 := q.get()

The vertex cntx means that there are x zeros in q. A natural
generalization is to allow at most n zeros. The size of the TOPL
property text grows linearly with n. A better solution would be to
allow incrementing and decrementing of automaton variables when
transitions are performed. This feature can be easily added to TOPL.
However, this is the only example we have encountered so far that
would require incrementing and decrementing automaton variables.
For this reason, we chose to keep TOPL simple and not include
this feature.

2.5 Recursivity and Atomicity
This section is inspired by the higher-order temporal properties of
Disney et al. [14].

The sort method is not recursive:
property RecursiveSort
prefix <Sorter>
start -> inSort: call *.sort[*]
inSort -> ok: return sort[*]
inSort -> error: call *.sort[*]

Method m should be atomic:
property NotAtomicM

observing <somePackage.*>
prefix <somePackage.SomeClass>
start -> inM: call *.m[*]
inM -> ok: return m[*]
inM -> error: call *

The observing directive explicitly lists the observable events,
thus choosing the proper granularity. In this case, all method calls
within somePackage are observed. The method m is assumed to be
in SomeClass.

2.6 Null Dereference
Simple non-temporal properties can also be expressed in TOPL.

No method should be called on null:
property NullDereference

observing <*>
start -> error: call <null>.*

3. Syntax
We begin the systematic presentation of TOPL with its syntax
(Section 3.1). Before moving on to semantics (Section 4) we
shall also introduce the syntax of SOOL, a simple object-oriented
programming language (Section 3.3).

3.1 TOPL and iTOPL
TOPL aims to be intuitive: Labels look like method calls, there
is a shorthand notation for parallel transitions, there is an implied
loop on the vertex start, the prefix directive offers some extra
convenience, and so on. From the point of view of semantics,
however, these conveniences are in the way. For this reason we
also define iTOPL (inner TOPL), an even simpler language into
which TOPL is desugared.

Figure 5 shows the syntax of TOPL. A property has a name,
a set of prefix directives, a set of observing directives, and a
set of transitions. Each transition has an arc (directed edge) and
labels. Each arc has a source vertex and a target vertex. All vertices
are identified by their name. Labels look roughly like method calls.
Each label has a method pattern that is used to identify the set of
methods to which the label refers. In the simple case, a method
pattern consists of a string pattern for the name of the method and
an integer that specifies the method arity. (For simplicity, TOPL
does not use the static types of arguments to distinguish between
overloaded methods.) The more interesting case is when there are
value patterns for each argument and perhaps even for the result.
Transitions may be tagged with call or return to specify exactly
at what time they should be performed (see Section 4.1 for details).

There are three types of patterns used in TOPL—for strings, for
integers, and for values. String patterns are POSIX globs [2] and
match method names. (For simplicity, TOPL does not use full regular
expressions as string patterns.) Integer patterns specify method
arities. Value patterns are the most interesting. For each automaton
variable var there are two associated patterns. The uppercase pattern
Var matches any value and writes it in the automaton variable var.
The lowercase pattern var reads the value of the automaton variable
var and only matches that value. A Java literal surrounded by angle
brackets acts as a pattern that matches only the value it denotes. A
wildcard * pattern matches any value.

A TOPL property is well-formed when it satisfies the following
conditions.

• For each automaton variable, a transition may prescribe at most
one write. In other words, a given uppercase pattern may appear
at most once within a label.

Property ::= property Identifier Item∗
Item ::= Prefix | Observing | Transition

Prefix ::= prefix < StringPattern >
Observing ::= observing < StringPattern >
Transition ::= Arc : Label (, Label)∗

StringPattern ::= (Letter | . | * | { | } | ,)+

Arc ::= Vertex -> Vertex
Label ::= Tag? MethodPattern
Vertex ::= Identifier

Tag ::= call | return
MethodPattern ::= ResultPattern? NamePattern ArgumentsPattern

ResultPattern ::= ValuePattern :=
NamePattern ::= StringPattern

ArgumentsPattern ::= ((ValuePattern (, ValuePattern)∗)?)
ArgumentsPattern ::= [IntegerPattern]

ValuePattern ::= * | < Literal > | UppercaseId | LowercaseId
IntegerPattern ::= * | IntegerLiteral

Figure 5. Syntax of TOPL

Property ::= property Identifier Transition∗
Transition ::= Arc : TransitionStep∗

TransitionStep ::= (TagGuard MethodGuard ValueGuard∗ Action∗)
TagGuard ::= * | call | return

MethodGuard ::= NamePattern [IntegerPattern]
ValueGuard ::= [ValueIndex] = (Identifier | Literal)

Action ::= Identifier := [ValueIndex]
ValueIndex ::= IntegerLiteral

Figure 6. Syntax of iTOPL

• Automaton variables must be written before being read. In other
words, lowercase patterns must be preceded by corresponding
uppercase patterns on all paths coming from start.

It is easy to check that a property is well-formed [20]. From now on
we assume TOPL properties to be well-formed.

Figure 6 shows the syntax of iTOPL. The missing productions
(such as Arc) are the same as for TOPL. Each transition is labeled by
a list of steps. Each step has guards and actions. There are several
types of guards. A tag guard may restrict the type of events (call
or return). A method guard requires that the method name and its
arity match certain patterns. Value guards impose restrictions on the
values carried by events. Both value guards and actions refer to the
values carried by events using an index.

3.2 Translating TOPL into iTOPL
TOPL is designed to express properties over traces of events
pertaining to method calls. A method call u.m(v1, . . . , vn) that
returns w will generate the following two events:

callm[n+1] [u, v1, . . . , vn]

and

returnm[n+1] [w]

The call events are matched by labels of the form

call p0.m(p1, . . . , pn)

with n value patterns for the arguments, while the return events are
matched by labels of the form

return p0 := m

with one value pattern for the return value. In both cases the TOPL
labels give rise to an iTOPL transition with one step.

The guard is constructed by stating that all automaton variables
should have the appropriate values. That is, all lowercase automaton

patterns x = pi amongst the value patterns give rise to a guard term
of the form

[i] = x,

referring to the array of values carried by the event.
The action expresses that automaton variables should be updated.

So all uppercase automaton variables X = pi amongst the value
patterns give rise to an update term of the form

x := [i]

The action is then the concatenation of all such update terms.

Example 1. The TOPL label call C.bar(*, x) becomes the
iTOPL step

call {foo.,}bar[3] [2] = x c := [0],

assuming the prefix directive prefix <foo>.

But it is also possible to write labels of a third form in TOPL,
namely

p′0 := p0.m(p1, . . . , pn).

These are translated into two iTOPL steps corresponding, in order,
to the TOPL labels call p0.m(p1, . . . , pn) and return p′0 := m.

In our implementation [20], the translation from TOPL to iTOPL
is done during parsing. In other words, TOPL corresponds to the
concrete syntax, and iTOPL corresponds to the AST data structures.

3.3 SOOL
Traces of events act as a thin interface between programs and iTOPL
properties. To use iTOPL with some programming language, one
must define how programs in that language produce events. Also,
because iTOPL is low-level, one should design a high-level property
language. TOPL is an example of a high-level property language
built on top of iTOPL that is suitable in an object-oriented setting.
SOOL is an example of an object-oriented programming language
that produces events.

The following is a small snippet of a SOOL program.
class User

Unit remove(Collection c, Object x)
var Bool hasNext
var Iterator i := c.iterator()
do { hasNext := i.hasNext() }
while hasNext

var Object y := i.next()
if x == y { i.remove() }

return unit

In SOOL, statements are grouped by {curly brackets} or by inden-
tation. SOOL expressions do not have side-effects. Method calls
have side-effects—they are statements. There is only one type of
loop, which checks its condition at some arbitrary point (like \loop
in TEX). Other aspects of SOOL are fairly standard.

Figure 7 shows a big part of SOOL’s syntax.

4. Semantics
A program’s semantics is a set of event traces; an automaton’s
semantics is also a set of event traces. We say that a program
violates a property when their sets of traces intersect. In other words,
properties encode bad executions, rather than good executions.
Notation 3. Sets are typeset in SansSerif with two exceptions—B is
the set {0, 1}, and N is the set {0, 1, 2, . . . }. We write A × B for
the set of all pairs (a, b) with a ∈ A and b ∈ B. We write A → B
for the set of functions from A to B. In particular, the powerset of A
is isomorphic to A → B. Note that (A → B) ⊂

(
(A × B) → B

)
.

For all f ∈ A → B, we write f a or f(a) to denote the unique b
such that (a, b) ∈ f . We write A ⇀ B for the set of finite partial

Program ::= Class∗ Main
Class ::= class Identifier Member∗
Main ::= main Body

Member ::= Type Identifier data
Member ::= Type Identifier (Formals?) Body code

Body ::= Statement∗
Formals ::= Type Identifier (, Type Identifier)∗

Statement ::= return Expression return
Statement ::= Reference := new allocate
Statement ::= Reference := * read
Statement ::= Reference := Reference (Actuals?) call
Statement ::= do Body while Expression Body loop
Statement ::= if Expression Body else Body test
Reference ::= Expression . Identifier

Actuals ::= Expression (, Expression)∗

Figure 7. (Partial) Syntax of SOOL

maps from A to B. Again, (A⇀ B) ⊂
(
(A× B)→ B

)
. However,

there are functions that are not finite partial maps, and there are
finite partial maps that are not functions. For all f ∈ A ⇀ B,
the domain {a | (a, b) ∈ f for some b} is finite. We write f a
or f(a) only when a is in the domain of f . We write Aarray for⋃

n∈N
(
{0, 1, . . . , n − 1} → A

)
. For i ∈ N and a ∈ Aarray, we

will usually write ai instead of a i.

4.1 Semantics of iTOPL
Each property gives rise to an automaton defined over the labeled
multigraph (Vertex,Arc) given by the transitions: Vertex is the set
of vertices mentioned as endpoints of the arcs and Arc is the set of
labeled arcs mentioned in transitions.

The automaton takes as input a trace of events. Each event e
contains an array of values. Within guards and actions we write
e[i] for the ith value associated to event e (0-based). For values, we
assume a countable set Value and for events we assume a finite set
Event of events with known arity.

We will now describe how the automaton reacts to events,
specifically how labels are evaluated. As this is a slightly non-
standard automaton, there are some important things to point out.
Firstly, the state of the automaton is not just a vertex but also a store.

That is, there is a set Variable of automaton variables, and the
state of the automaton is given by specifying the vertex in the graph
as well as the value of all automaton variables.

We model stores as finite partial maps with finite domain.

Store = Variable⇀ Value

And so a state of the automaton has the type

State = Vertex× Store

Given the state of the automaton and an event we would like to know
which transitions are enabled. But actually, we do not have enough
information to determine that. This is a consequence of the second
slightly non-standard aspect of our automatons, namely that each
label carries not only a single guard but potentially a list of guards.
We call the length of this list, the depth of the transition.

In order for a transition to be enabled, all the guards along its
list have to evaluate to true. We will describe this evaluation in
a moment, but now we note that each guard along the transition
consumes an event. Thus, if a transition has depth n, then we have
to examine the next n events to see if the transition is enabled.

A further consequence is that the following events to be received
are not the same at the end of each enabled transition. If two
transitions turn out to be enabled, one with depth 2 and the other
with depth 5, then the end state of the first transition will see the third
event of the trace next, while the end state of the second transition
will see the sixth event next. For this reason, it is necessary to keep

track of which events are next to be received by each state during a
run of the automaton.

To formalize this bookkeeping, we introduce the notion of
execution state. For brevity, we call execution states worlds.

World = State× Trace

The first component records the state of the automaton (vertex and
store) and the second component records the remaining trace of
events for that state.

We now describe when transitions are enabled. For this we have
to look at labels. A label is a list of pairs of guards and actions. A
guard compares the values in an event with those in a store and
concludes either pass or no pass:

Guard = Event× Store→ B

if the event passes, the corresponding action is performed on that
event. Actions modify the store, using values from an event:

Action = Event× Store→ Store

In order for a transition of depth n to be enabled for a trace of events,
the first n events of the trace must pass the n guards on the label
with the stores modified by the guards:

enabled((g1, a1), . . . , (gn, an); e1, . . . , en; s)
= g1(e1, s0) ∧ . . . ∧ gn(en, sn−1)

where

s0 = s (1)
si = ai(ei, si−1) for i ∈ 1. . n (2)

If the transition is enabled and performed, the store for the target
vertex will be sn.
Remark 1. It is natural to ask whether transitions of depth > 1
could be desugared into transitions of depth 1. We tried (1) to
rewrite guards and do all the actions at the end, (2) to exploit
nondeterminism, and (3) to use a special undo action. All three
approaches run into fundamental barriers [19].

And now we reach the final slightly non-standard aspect of our
automatons, namely that if no transitions are enabled for a given
state and trace of events, the automaton does not get stuck but is
allowed to consume one event without changing its state. Note that
this is not equivalent to an implied self-loop on all states, as dropping
events is not allowed if there are any enabled transitions. In that
case one of the enabled transitions is performed and the automaton
execution state becomes ((v, sn), eventsn), where v is the vertex
at the end of the arc of the transition, sn is defined as above and
eventsn is the current executions state’s event trace with the first n
events dropped.

We can define a predicate that determines the possible execution
state transitions

Step ∈World→World→ B

this predicate is defined in Figure 8. From this we can define a
non-deterministic step function, where all enabled transitions are
performed:

NdetStep ∈ (World→ B)→ (World→ B) (3)

NdetStep S = {s | Step(s′, s) for some s′ ∈ S} (4)

An iterated version of NdetStep is useful for defining reachable states.
We define it as the least fixed point for the following equation.

NdetStep? S = S ∪NdetStep? (NdetStep S) (5)

Finally, we can define the set of traces described by an automaton:

{e | ∃σ′e′, ((error, σ′), e′) ∈ NdetStep? {((start, []), e)}}

STEP ((x1, σ1), e1) ((x2, σ2), e2)

1 if e2 is not a suffix of e1 then return 0
2 e := e1 without the suffix e2
3 for each transition ((y1, y2), l)
4 if (y1, y2) 6= (x1, x2) ∨ len l 6= len e then continue
5 σ := σ1

6 for each k ∈ 1 . . . len l
7 (g, a) := l[k]
8 if ¬g(ek, σ) then continue to line 3
9 σ := a(ek, σ)

10 if σ = σ2 then return 1
11 return len e = 1 ∧ σ1 = σ2

Figure 8. One automaton step

These are the traces that drive the automaton from the start vertex
(with an empty store) to the error vertex.

4.2 Semantics of SOOL
The program state holds method parameters and dynamically allo-
cated objects. Method parameters are held in a store; dynamically
allocated objects are held in the heap. The heap is a finite partial
map from (object reference, field name) pairs to values.

SoolState = Store× Heap (6)
Store = Variable⇀ Value (7)
Heap = (Value× Variable)⇀ Value (8)

The input is a stream of values; the output is an array of events. The
program world keeps track of the program state, the input yet to be
consumed, and of the output already produced.

Input = N→ Value (9)
Trace = Event array (10)

SoolWorld = SoolState× Input× Trace (11)
((σ, h), i, o) ∈ SoolWorld (12)

Equation (12) shows the general form of an element of SoolWorld:
σ is the store that holds parameters, h is the heap that holds dynami-
cally allocated objects, i is the input stream yet to be processed, and
o is the array of events already emitted. The implementation [20]
also has local variables, which are treated similarly to method pa-
rameters.

Executing a SOOL program amounts to executing the main body,
which is a compound statement.

exec ∈ (SoolWorld× Statement)→ (SoolWorld× Value)
(13)

Method calls are interesting. The general form of a method call is

e.x := f.m(g1, . . . , gn)

where e, f , g1, . . . , gn are expressions, x identifies a data field, and
m identifies a method. Expressions evaluate to values and do not
have side-effects.

Expression = SoolState→ Value (14)
e, f, g1, . . . , gn ∈ Expression (15)

Notation 4. The map σ[k : v] is the same as the map σ, except it
maps k to v.

Figure 9 shows the definition of exec for method calls. In spite
of the imperative-looking notation, there is no mutation: Different
versions of σ, h, i, and o get different indices. Line 1 introduces a
shorthand notation for the program state s. Line 2 looks up in the
program text a method namedm. We assume that method names are
unique. The formal parameters of m are x1, . . . , xn. We assume a

EXEC
((

(σ0, h0), i0, o0
)
,
(
e.x := f.m(g1, . . . , gn)

))
1 s := (σ, h)
2 ((x1, . . . , xn), b) := methodOfName m
3 σ1 := [this : (f s), x1 : (g1 s), . . . , xn : (gn s)]
4 o1 := o0 with (callm, [f s, g1 s, . . . , gn s]) appended
5 (((σ2, h2), i2, o2), v) := exec

(
((σ1, h0), i0, o1), b

)
6 o3 := o2 with (returnm, [v]) appended
7 h3 := h2[(e s, x) : v]
8 return (((σ2, h3), i2, o3), ())

Figure 9. Executing one SOOL method call

type-checker enforces that all calls are made with the correct number
of arguments. The body of m is b. Line 3 constructs a store that
maps formal arguments to the actual values; σ1 is commonly called
the call stack frame of m. Line 4 emits the first event: It has tag
callm and carries the actual argument values. Line 5 executes the
body, by calling exec recursively. Line 6 emits the second event:
It has tag returnm and carries the return value. Line 7 stores the
return value in the heap. Finally, line 8 returns the updated program
execution state and the unit value ().

Other statements are interpreted as usual and are not interesting.
Given a program with the main body b, the output trace o

corresponding to some input i is obtained by starting the execution
with an empty store [], an empty heap [], and an empty output [].

((, , o),) := exec
(
(([], []), i, []), b

)
(16)

4.3 Implementation
In order to test the semantics, we implemented a TOPL and SOOL
interpreter [20]. Indeed, the implementation helped us understand
TOPL. There are two main differences with the presentation above.

First, we under-approximate nondeterminism by randomness.
Where the semantics prescribe a set S of active states, the interpreter
tracks only one active state s ∈ S. A random number generator
guides the choice of s at each step. Thus, different seeds of the
random number generator explore different traces. Simulating non-
determinism by randomness is unsound. However, the TOPL and
SOOL interpreter is not meant to prescribe how dynamic analysis
of TOPL properties should be done.

Second, the trace of events is communicated from the SOOL
interpreter to the TOPL interpreter lazily. The only consequence is
that less memory is used. At most two events are remembered at any
one time, rather than the whole trace.

If the reader finds any part of Section 4 ambiguous or incomplete,
then the code should clarify the details.

5. Related Work
Our work is based on the concept of typestate [29] originally devel-
oped for imperative programs and extends this fundamental concept
by integrating notions typical of object-oriented programs. We are
certainly not the first in doing this: there are several extensions of
typestate to object-oriented programming in the literature. A modu-
lar static verification method for typestate protocols is introduced
in [8]. The specification method is based on linear logic and re-
lations among objects in the protocol are monitored by a tailored
system of permissions. The method is highly modular and presum-
ably efficient. The specification of the interactions among objects
by means of permissions adds an extra level of machinery which
increases the gap between the intuitive protocol description and its
formalization. Similarly [7, 13] provide a mean to specify typestate
properties that belong to a single object. The specified properties are
reminiscent of contracts or pre/post-conditions for methods and can
deal with inheritance. In [17] the authors present sound verification

techniques for typestate properties of Java programs. Their approach
is divided in several stages with different verifiers varying for cost
and precision. In the early stages efficient but imprecise analyses
are employed whereas more expensive and precise techniques are
then progressively employed in later stages. Every stage focuses on
verifying only the parts of the code that previous stages failed to ver-
ify. This work focuses on analysis whereas we focus on presenting a
useful specification language as the base for verification. It is likely
that our language could be fruitfully combined with their analysis
technique.

An automaton-based formalism for specifying properties of
software interfaces were introduced in [12] . This language aims at
capturing assumptions about the order in which the methods of a
component are called and the order in which the component calls
external method. In contrast to TOPL, this formalism is mainly
used to check the compatibility of the interfaces of two components
and it is designed to be applied at model level rather than code
level. A specification language for interface checking aimed to C
programs (called SLIC) is introduced in [5]. Differences between
SLIC and TOPL include: the use (in SLIC) of non-determinism to
encode universal quantification of dynamically allocated data, and
the ability to have complex code in the automaton transitions. TOPL
specifications naturally express universally quantified properties
over data structures and for computability reasons, we have chosen
to limit the actions performed during automaton transitions. Simple
SLIC specifications are verified by the SLAM verifier [4]. While
SLAM specialises on device drivers and checks client conformance
rather than full protocols, very general specifications of object-
oriented program behaviour can be given in JML [1] and Spec] [6].
However the latter two languages focus on class specifications and
do not have temporal features.

In [14] contracts are used to express legal traces of programs in a
functional language with references. The contracts specify traces as
regular expressions over calls and returns and so look similar to our
automatons, if for a quite different setting. Here, the specifications
are function-centered, though, and again, capturing inter object
relations seems somewhat awkward.

ConSpec [3] is a language used to describe security policies.
Because ConSpec automatons are deterministic and have only a
countable number of states, they cannot in principle express the
property IteratorComodification (Section 2.1).

6. Conclusions and Future Work
This paper presents ongoing work on the design of TOPL—a lan-
guage for expressing temporal safety properties for object-oriented
programs. TOPL is translated into an intermediate language, iTOPL.
The low-level iTOPL is very regular and so its semantics are easy
to define. The high-level TOPL is designed to look familiar to
an object-oriented programmer. More importantly, TOPL curtails
iTOPL’s expressivity in a way that, we expect, will benefit static
verification. Our implementation helped clarify TOPL’s semantics.

We designed TOPL for dynamic and static analysis of Java pro-
grams. The next steps are to develop a dynamic analyzer and a
static analyzer. For dynamic analysis, we intend to instrument Java
bytecode and run a checker in parallel with the real program. The
challenge we expect here is to reduce the run-time overhead. For
static analysis, we intend to build on the jStar framework [15]. Re-
member that TOPL’s guards are basically aliasing checks. Separation
logic [28] is a good formalism for reasoning about aliasing and is the
foundation of jStar. The challenges we expect here are convergence
and scalability. For convergence, we must find suitable abstractions,
which obtain meaningful and precise over-approximations of the
state space of the programs. For scalability, we may need a tailored
version of bi-abduction inference [11].

Another possible development would be to design other high-
level property languages on top of iTOPL. For example, it is
conceivable that iTOPL could be used as an intermediate language
in tools that verify temporal properties of programs written in
Haskell [27] or Boogie [23].

Finally, we intend to define TOPL’s semantics also in a concur-
rent setting.

Acknowledgments
The authors thank the anonymous reviewers for the thorough feed-
back. This work was supported by the EPSRC grants EP/H011749/1
and EP/G006245/1.

References
[1] http://www.eecs.ucf.edu/~leavens/JML.
[2] man glob.h.
[3] I. Aktug and K. Naliuka. ConSpec — a formal language for policy

specification. Electr. Notes Theor. Comput. Sci., 197(1):45–58, 2008.
[4] T. Ball and S. K. Rajamani. The SLAM toolkit. In G. Berry, H. Comon,

and A. Finkel, editors, CAV, volume 2102 of Lecture Notes in Computer
Science, pages 260–264. Springer, 2001. ISBN 3-540-42345-1.

[5] T. Ball and S. K. Rajamani. SLIC: a specification language for interface
checking (of C). Technical Report MSR-TR-2001-21, Microsoft
Research, 2002.

[6] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte.
Verification of object-oriented programs with invariants. Journal of
Object Technology, 3(6):27–56, 2004.

[7] K. Bierhoff and J. Aldrich. Lightweight object specification with
typestates. In M. Wermelinger and H. Gall, editors, ESEC/SIGSOFT
FSE, pages 217–226. ACM, 2005. ISBN 1-59593-014-0.

[8] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased
objects. In R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S. Jr.,
editors, OOPSLA, pages 301–320. ACM, 2007. ISBN 978-1-59593-
786-5.

[9] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API protocol
checking with access permissions. In S. Drossopoulou, editor, ECOOP,
volume 5653 of Lecture Notes in Computer Science, pages 195–219.
Springer, 2009. ISBN 978-3-642-03012-3.

[10] E. Bodden, P. Lam, and L. J. Hendren. Finding programming errors
earlier by evaluating runtime monitors ahead-of-time. In M. J. Harrold
and G. C. Murphy, editors, SIGSOFT FSE, pages 36–47. ACM, 2008.
ISBN 978-1-59593-995-1.

[11] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. In Z. Shao and B. C. Pierce,
editors, POPL, pages 289–300. ACM, 2009. ISBN 978-1-60558-379-2.

[12] L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC /
SIGSOFT FSE, pages 109–120, 2001.

[13] R. DeLine and M. Fähndrich. Typestates for objects. In M. Odersky,
editor, ECOOP, volume 3086 of Lecture Notes in Computer Science,
pages 465–490. Springer, 2004. ISBN 3-540-22159-X.

[14] T. Disney, C. Flanagan, and J. McCarthy. Temporal higher-order
contracts. In ICFP, 2011.

[15] D. Distefano and M. J. Parkinson. jStar: towards practical verification
for Java. In Harris [22], pages 213–226. ISBN 978-1-60558-215-3.

[16] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification:
Abstraction techniques and complexity results. Sci. Comput. Program.,
58(1-2):57–82, 2005.

[17] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. In L. L. Pollock
and M. Pezzè, editors, ISSTA, pages 133–144. ACM, 2006. ISBN
1-59593-263-1.

[18] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
[19] R. Grigore. TOPL implementation design note.

http://goo.gl/PF35z, 2011. Non-unit transitions.

[20] R. Grigore and R. L. Petersen. TOPL implementation.
http://goo.gl/KD8Sy, 2011.

[21] C. Haack and C. Hurlin. Resource usage protocols for iterators. Journal
of Object Technology, 8(4):55–83, 2009.

[22] G. E. Harris, editor. Proceedings of the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN,
USA, 2008. ACM. ISBN 978-1-60558-215-3.

[23] K. R. M. Leino. This is Boogie 2. KRML 178, 2008.
[24] Z. Manna and A. Pnueli. Temporal verification of reactive systems -

safety. Springer, 1995. ISBN 978-0-387-94459-3.
[25] N. A. Naeem and O. Lhoták. Typestate-like analysis of multiple

interacting objects. In Harris [22], pages 347–366. ISBN 978-1-60558-
215-3.

[26] M. Parkinson. Class invariants: the end of the road? In IWACO 2007.
Position Paper.

[27] S. Peyton Jones, editor. Haskell 98 Language and Libraries — The
Revised Report. Cambridge University Press, Cambridge, England,
2003.

[28] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74. IEEE Computer Society, 2002. ISBN
0-7695-1483-9.

[29] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Software Eng.,
12(1):157–171, 1986.

http://www.eecs.ucf.edu/~leavens/JML
http://goo.gl/PF35z
http://goo.gl/KD8Sy

	Introduction
	Examples
	Iterators Step by Step
	More on Iterators
	Resources
	Slic Queue
	Recursivity and Atomicity
	Null Dereference

	Syntax
	TOPL and iTOPL
	Translating TOPL into iTOPL
	SOOL

	Semantics
	Semantics of iTOPL
	Semantics of SOOL
	Implementation

	Related Work
	Conclusions and Future Work

